13.已知數(shù)列{an}是首項(xiàng)為32的正項(xiàng)等比數(shù)列,Sn是其前n項(xiàng)和,且$\frac{{S}_{7}-{S}_{5}}{{S}_{5}-{S}_{3}}$=$\frac{1}{4}$,若Sk≤4•(2k-1),則正整數(shù)k的最小值為4.

分析 設(shè)等比數(shù)列{an}的公比為q>0,$\frac{{S}_{7}-{S}_{5}}{{S}_{5}-{S}_{3}}$=$\frac{1}{4}$,q2=$\frac{1}{4}$,解得q=$\frac{1}{2}$.可得Sk.代入不等式Sk≤4•(2k-1),化簡即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q>0,$\frac{{S}_{7}-{S}_{5}}{{S}_{5}-{S}_{3}}$=$\frac{1}{4}$,
∴$\frac{{a}_{7}+{a}_{6}}{{a}_{5}+{a}_{4}}$=$\frac{{q}^{2}({a}_{5}+{a}_{4})}{{a}_{5}+{a}_{4}}$=q2=$\frac{1}{4}$,解得q=$\frac{1}{2}$.
∴Sk=$\frac{32[1-(\frac{1}{2})^{k}]}{1-\frac{1}{2}}$=$64[1-(\frac{1}{2})^{k}]$.
不等式Sk≤4•(2k-1),即$64[1-(\frac{1}{2})^{k}]$≤4•(2k-1),化為:16≤2k,
則正整數(shù)k的最小值為4.
故答案為:4.

點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式與求和公式、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=f(x)的圖象如圖所示,則f(x)的解析式可以為( 。
A.$f(x)=\frac{1}{x}-{x^2}$B.$f(x)=\frac{1}{x}-{x^3}$C.$f(x)=\frac{1}{x}-{e^x}$D.$f(x)=\frac{1}{x}-lnx$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.公差不為零的等差數(shù)列{an}的前n項(xiàng)和為Sn,若a4是a2與a7的等比中項(xiàng),S5=50,則S8等于104.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.知a,b,c,d是正實(shí)數(shù),且abcd=1,求證:a5+b5+c5+d5≥a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤2}\\{x+y≥1}\\{x-y≤1}\end{array}\right.$,則z=3x+y的最小值為( 。
A.-1B.1C.0D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|0<x≤1},B={x|x2<1},則(∁RA)∩B=( 。
A.(0,1)B.[0,1]C.(-1,1]D.(-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,內(nèi)角A、B、C的對邊分別是a、b、c,若c=2a,sinB=$\sqrt{3}$sinA,則B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知集合U={1,2,…,n}(n∈N*,n≥2),對于集合U的兩個非空子集A,B,若A∩B=∅,則稱(A,B)為集合U的一組“互斥子集”.記集合U的所有“互斥子集”的組數(shù)為f(n)(視(A,B)與(B,A)為同一組“互斥子集”).
(1)寫出f(2),f(3),f(4)的值;
(2)求f(n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+y2=1,圓C:x2+y2=6-a2在第一象限有公共點(diǎn)P,設(shè)圓C在點(diǎn)P處的切線斜率為k1,橢圓M在點(diǎn)P處的切線斜率為k2,則$\frac{{k}_{1}}{{k}_{2}}$的取值范圍為( 。
A.(1,6)B.(1,5)C.(3,6)D.(3,5)

查看答案和解析>>

同步練習(xí)冊答案