3.函數(shù)y=f(x)的圖象如圖所示,則f(x)的解析式可以為(  )
A.$f(x)=\frac{1}{x}-{x^2}$B.$f(x)=\frac{1}{x}-{x^3}$C.$f(x)=\frac{1}{x}-{e^x}$D.$f(x)=\frac{1}{x}-lnx$

分析 根據(jù)定義域、零點(diǎn)個(gè)數(shù)、單調(diào)性和極限等方面逐個(gè)判斷即可.

解答 解:對(duì)于A,當(dāng)x→-∞時(shí),f(x)→-∞,不符合題意;
對(duì)于B,令f(x)=0得x4=1,∴x=±1,即f(x)有兩個(gè)零點(diǎn),不符合題意;
對(duì)于D,f(x)的定義域?yàn)椋?,+∞),不符合題意;
故選C.

點(diǎn)評(píng) 本題考查了函數(shù)圖象的意義,函數(shù)單調(diào)性、零點(diǎn)個(gè)數(shù)的判斷,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$的離心率為$\sqrt{5}$,則拋物線y2=4x的焦點(diǎn)到雙曲線的漸近線的距離是( 。
A.$\frac{{\sqrt{5}}}{10}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{{4\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知集合A={x|-1<x<2},B={x|0<x<2},則∁AB=(  )
A.(-1,0)B.(-1,0]C.(0,2)D.[0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=$\frac{1}{x}-{2^x}$,則$f(\frac{1}{2})$>f(1)(填“>”或“<”);f(x)在區(qū)間$(\frac{n-1}{n},\frac{n}{n+1})$上存在零點(diǎn),則正整數(shù)n=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若集合A={-2,0,1},B={x|x<-1或x>0},則A∩B=( 。
A.{-2}B.{1}C.{-2,1}D.{-2,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知O為原點(diǎn),點(diǎn)P為直線2x+y-2=0上的任意一點(diǎn).非零向量$\overrightarrow{a}$=(m,n).若$\overrightarrow{OP}$•$\overrightarrow{a}$恒為定值,則$\frac{m}{n}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知等差數(shù)列{an}的公差為2,且a1,a2,a4成等比數(shù)列,則a1=2;數(shù)列{an}的前n項(xiàng)和Sn=n2+n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.將函數(shù)f(x)=cos2x圖象向左平移φ(0<φ<$\frac{π}{2}$)個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{6}$]上單調(diào)遞減,且函數(shù)g(x)的最大負(fù)零點(diǎn)在區(qū)間(-$\frac{π}{6}$,0)上,則φ的取值范圍是(  )
A.[$\frac{π}{12}$,$\frac{π}{4}$]B.[$\frac{π}{3}$,$\frac{5π}{12}$)C.($\frac{π}{4}$,$\frac{π}{3}$]D.[$\frac{π}{6}$,$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知數(shù)列{an}是首項(xiàng)為32的正項(xiàng)等比數(shù)列,Sn是其前n項(xiàng)和,且$\frac{{S}_{7}-{S}_{5}}{{S}_{5}-{S}_{3}}$=$\frac{1}{4}$,若Sk≤4•(2k-1),則正整數(shù)k的最小值為4.

查看答案和解析>>

同步練習(xí)冊(cè)答案