分析 根據(jù)函數(shù)的單調(diào)性即可判斷,再根據(jù)函數(shù)的零點(diǎn)存在定理即可求出
解答 解:易知函數(shù)f(x)=$\frac{1}{x}-{2^x}$為減函數(shù),
則f($\frac{1}{2}$)>f(1),
∵f(1)=1-2=-1,f($\frac{1}{2}$)=2-$\sqrt{2}$>0,
∴f(1)f($\frac{1}{2}$)<0,
∴函數(shù)f(x)的零點(diǎn)所在的區(qū)間為($\frac{1}{2}$,1),
∵f(x)在區(qū)間$(\frac{n-1}{n},\frac{n}{n+1})$上存在零點(diǎn),
∴$\frac{n-1}{n}$=$\frac{1}{2}$,
解得n=2,
故答案為:>,2
點(diǎn)評(píng) 本題主要考查函數(shù)零點(diǎn)的判定定理的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,+∞) | B. | (4,+∞) | C. | (-∞,-2] | D. | (-∞,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,3] | B. | (0,4] | C. | [2,3] | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a3>a2 | B. | a1+a2>0 | C. | $\{{a_n}^2\}$是遞增數(shù)列 | D. | Sn存在最小值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)=\frac{1}{x}-{x^2}$ | B. | $f(x)=\frac{1}{x}-{x^3}$ | C. | $f(x)=\frac{1}{x}-{e^x}$ | D. | $f(x)=\frac{1}{x}-lnx$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com