7.將2本相同的小說,2本相同的畫冊全部分給3名同學,每名同學至少1本,則不同的分法有( 。
A.6B.9C.12D.15

分析 分三類,有一個人分到一本小說和一本畫冊,有一個人分到兩本畫冊,有一個人分到兩本小說,根據(jù)分類計數(shù)原理可得.

解答 解:第一類:有一個人分到一本小說和一本畫冊,這種情況下的分法有:先將一本小說和一本畫冊分到一個人手上,有3種分法,將剩余的1本小說,1本詩集分給剩余2個同學,有2種分法,那共有3×2=6種
第二類,有一個人分到兩本畫冊,這種情況下的分法有:先將兩本畫冊分到一個人手上,有3種情況,將剩余的2本小說分給剩余2個人,只有一種分法.那共有:3×1=3種,
第三類,有一個人分到兩本小說,這種情況的分法同上,共有:3×1=3種,
綜上所述:總共有:6+3+3=12種分法,
故選:C.

點評 本題考查了分類和分步計數(shù)原理,關(guān)鍵是分類,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{x}{lnx}$+mx(m為常數(shù)).
(1)若y=f(x)在x=e2處的切線與直線4x+9y-2016=0垂直,求y=f(x)的單調(diào)區(qū)間;
(2)若不等式f(x)≤$\frac{{e}^{2}}{2}$在[e,e2]上值成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=xlnx+ax2-3,且f'(1)=-1,
(1)求f(x)的解析式;
(2)若對于任意x∈(0,+∞),都有f(x)-mx≤-3,求m的最小值;
(3)證明:函數(shù)y=f(x)-xex+x2的圖象在直線y=-2x-3的下方.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.某學校用系統(tǒng)抽樣的方法,從全校500名學生中抽取50名做問卷調(diào)查,現(xiàn)將500名學生編號為1,2,3,…,500,在1~10中隨機抽地抽取一個號碼,若抽到的是3號,則從11~20中應(yīng)抽取的號碼是( 。
A.14B.13C.12D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知△ABC的外接圓的圓心為O,若$\overrightarrow{AB}$+$\overrightarrow{AC}$=2$\overrightarrow{AO}$,且|${\overrightarrow{AC}}$|=|${\overrightarrow{AO}}$|,則$\overrightarrow{AB}$與$\overrightarrow{BC}$的夾角為150°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.一個化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4t,硝酸鹽18t,可獲利10000元,生產(chǎn)一車皮乙種肥料所需的主要原料是磷酸鹽是1t,硝酸鹽15t,可獲利5000元,現(xiàn)庫存磷酸鹽15t,硝酸鹽66t,則安排甲、乙兩種肥料的生產(chǎn)分別是多少時,才能獲得的最大利潤( 。
A.-3,1B.2,2C.2,1D.1,3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.命題“a,b∈R,若a2+b2=0,則a=b=0”的逆否命題是( 。
A.a,b∈R,若a≠b≠0,則a2+b2=0B.a,b∈R,若a=b≠0,則a2+b2≠0
C.a,b∈R,若a≠0且b≠0,則a2+b2≠0D.a,b∈R,若a≠0或b≠0,則a2+b2≠0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知平面向量$\overrightarrow{a}$,$\overrightarrow$的夾角是60°,|$\overrightarrow{a}$|=|$\overrightarrow$|=1,|x$\overrightarrow{a}$+y$\overrightarrow$|=$\sqrt{3}$(x,y∈R),則|x$\overrightarrow{a}$-y$\overrightarrow$|的最大值是( 。
A.1B.$\sqrt{3}$C.3D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.橢圓$\frac{x^2}{6}+\frac{y^2}{9}=1$的焦點坐標為(0,$\sqrt{3}$),(0,-$\sqrt{3}$).

查看答案和解析>>

同步練習冊答案