17.設f(x)=$\left\{\begin{array}{l}{|x-2|-2,|x|≥1}\\{\frac{1}{1+{x}^{2}},|x|<1}\end{array}\right.$,則f{[f($\frac{9}{2}$)]}=$\frac{4}{5}$.

分析 先求出f($\frac{9}{2}$)=|$\frac{9}{2}-2$|-2=$\frac{1}{2}$,從而f{[f($\frac{9}{2}$)]}=f($\frac{1}{2}$),由此能求出結果.

解答 解:∵f(x)=$\left\{\begin{array}{l}{|x-2|-2,|x|≥1}\\{\frac{1}{1+{x}^{2}},|x|<1}\end{array}\right.$,
∴f($\frac{9}{2}$)=|$\frac{9}{2}-2$|-2=$\frac{1}{2}$,
f{[f($\frac{9}{2}$)]}=f($\frac{1}{2}$)=$\frac{1}{1+(\frac{1}{2})^{2}}$=$\frac{4}{5}$.
故答案為:$\frac{4}{5}$.

點評 本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.命題“?x0∈∁RQ,x03∈Q”的否定是(  )
A.?x0∉∁RQ,x03∈QB.?x0∈∁RQ,x03∈QC.?x∉∁RQ,x3∈QD.?x∈∁RQ,x3∉Q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結論正確的序號是④.
①PB⊥AD;②二面角A-PB-C為直二面角; ③直線BC∥平面PAE;④直線PD與平面ABC所成的角為45°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知向量$\overrightarrow{a},\overrightarrow,\overrightarrow{c}$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=2,|$\overrightarrow{c}$|=1,($\overrightarrow{a}-\overrightarrow{c}$)•($\overrightarrow-\overrightarrow{c}$)=0,則|$\overrightarrow{a}-\overrightarrow$|的取值范圍為( 。
A.[$\sqrt{7}$-1,$\sqrt{7}$+1]B.($\sqrt{7}$-1,$\sqrt{7}$+1)C.[1,2]D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.擲兩枚均勻的骰子,已知點數(shù)不同,則至少有一個是3點的概率為(  )
A.$\frac{3}{10}$B.$\frac{5}{18}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,過橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上一點P向x軸作垂線,垂足為左焦點F,A,B分別為E的右頂點,上頂點,且AB∥OP,|AF|=$\sqrt{2}$+1.
(1)求橢圓E的方程;
(2)過原點O做斜率為k(k>0)的直線,交E于C,D兩點,求四邊形ACBD面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知全集為實數(shù)R,A={x|-2≤x≤3},B={x|x≥1,或x<-1},求A∩B,∁U (A∩B),(∁UA)∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若兩個等差數(shù)列{an}和{bn}的前n項和分別是Sn,Tn,已知$\frac{S_n}{T_n}$=$\frac{7n}{n+3}$,則$\frac{{{a_{10}}}}{{{b_9}+{b_{12}}}}$+$\frac{{{a_{11}}}}{{{b_8}+{b_{13}}}}$=$\frac{140}{23}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.命題$p:{({\frac{1}{2}})^x}$<1,命題q:lnx<1,則p是q成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案