設(shè)橢圓過(guò)點(diǎn),離心率為.
(1)求橢圓的方程;
(2)求過(guò)點(diǎn)且斜率為的直線被橢圓所截得線段的中點(diǎn)坐標(biāo).
(1);(2).

試題分析:(1)由橢圓過(guò)已知點(diǎn)和橢圓的離心率可以列出方程組,解方程組即可,也可以分步求解;(2)直線方程和橢圓方程組成方程組,可以求解,也可以利用根與系數(shù)的關(guān)系;然后利用中點(diǎn)坐標(biāo)公式求解即可.
試題解析:(1)將點(diǎn)代入橢圓C的方程得        1分
,得,                 3分
橢圓C的方程為                      4分
(2)過(guò)點(diǎn)且斜率為的直線為             5分
設(shè)直線與橢圓C的交點(diǎn)為
將直線方程代入橢圓C方程,整理得      7分
由韋達(dá)定理得
          10分
由中點(diǎn)坐標(biāo)公式中點(diǎn)橫坐標(biāo)為,縱坐標(biāo)為
所以所截線段的中點(diǎn)坐標(biāo)為                    12分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知、分別是橢圓的左、右焦點(diǎn).
(1)若是第一象限內(nèi)該橢圓上的一點(diǎn),,求點(diǎn)的坐標(biāo);
(2)設(shè)過(guò)定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(其
為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C=1(a>b>0)的離心率與等軸雙曲線的離心率互為倒數(shù)關(guān)系,直線lxy=0與以原點(diǎn)為圓心, 以橢圓C的短半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓C的方程;
(2)設(shè)M是橢圓的上頂點(diǎn),過(guò)點(diǎn)M分別作直線MA,MB交橢圓于AB兩點(diǎn),設(shè)兩直線的斜率分別為k1,k2,且k1k2=4,證明:直線AB過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知平面五邊形關(guān)于直線對(duì)稱(如圖(1)),,,將此圖形沿折疊成直二面角,連接得到幾何體(如圖(2))

(1)證明:平面;
(2)求平面與平面的所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為橢圓上的三個(gè)點(diǎn),為坐標(biāo)原點(diǎn).
(1)若所在的直線方程為,求的長(zhǎng);
(2)設(shè)為線段上一點(diǎn),且,當(dāng)中點(diǎn)恰為點(diǎn)時(shí),判斷的面積是否為常數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線在點(diǎn)處的切線垂直相交于點(diǎn),直線與橢圓相交于,兩點(diǎn).

(1)求拋物線的焦點(diǎn)與橢圓的左焦點(diǎn)的距離;
(2)設(shè)點(diǎn)到直線的距離為,試問(wèn):是否存在直線,使得,,成等比數(shù)列?若存在,求直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線C頂點(diǎn)為原點(diǎn),其焦點(diǎn)F(0,c)(c>0)到直線l:x-y-2=0的距離為,設(shè)P為直線l上的點(diǎn),過(guò)點(diǎn)P作拋物線C的兩條切線PA,PB,其中A,B為切點(diǎn).
(1)求拋物線C的方程;
(2)當(dāng)點(diǎn)P(x0,y0)為直線l上的定點(diǎn)時(shí),求直線AB的方程;
(3)當(dāng)點(diǎn)P在直線l上移動(dòng)時(shí),求|AF|·|BF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若拋物線y2=4x上的點(diǎn)A到其焦點(diǎn)的距離是6,則點(diǎn)A的橫坐標(biāo)是            (    )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線軸旋轉(zhuǎn)一周形成一個(gè)如圖所示的旋轉(zhuǎn)體,在此旋轉(zhuǎn)體內(nèi)水平放入一個(gè)正方體,該正方體的一個(gè)面恰好與旋轉(zhuǎn)體的開(kāi)口面平齊,則此正方體的體積是       

查看答案和解析>>

同步練習(xí)冊(cè)答案