已知平面五邊形關(guān)于直線對(duì)稱(如圖(1)),,,將此圖形沿折疊成直二面角,連接、得到幾何體(如圖(2))

(1)證明:平面;
(2)求平面與平面的所成角的正切值.
(1)證明詳見解析;(2).

試題分析:(1)先以B為坐標(biāo)原點(diǎn),分別以射線BF、BC、BA為x軸、y軸、z軸的正方向建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo)以及的坐標(biāo),進(jìn)而得到兩向量共線,即可證明線面平行;(2)先根據(jù)條件求出兩個(gè)半平面的法向量的坐標(biāo),再求出這兩個(gè)法向量所成角的余弦值,再結(jié)合同角三角函數(shù)的基本關(guān)系式可求得結(jié)果.
試題解析:(1)以B為坐標(biāo)原點(diǎn),分別以射線BF、BC、BA為x軸、y軸、z軸的正方向建立如圖所示的坐標(biāo)系.

由已知與平面幾何知識(shí)得,

,∴,∴AF∥DE,

                    6分
(2)由(1)得四點(diǎn)共面,,設(shè)平面
,則
不妨令,故,由已知易得平面ABCD的一個(gè)法向量為
,設(shè)平面與平面的所成角為

∴所求角的正切值為                    13分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),分別是橢圓的左、右焦點(diǎn),過作傾斜角為的直線交橢圓,兩點(diǎn), 到直線的距離為,連接橢圓的四個(gè)頂點(diǎn)得到的菱形面積為.
(1)求橢圓的方程;
(2)已知點(diǎn),設(shè)是橢圓上的一點(diǎn),過兩點(diǎn)的直線軸于點(diǎn),若, 求的取值范圍;
(3)作直線與橢圓交于不同的兩點(diǎn),,其中點(diǎn)的坐標(biāo)為,若點(diǎn)是線段垂直平分線上一點(diǎn),且滿足,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)A在橢圓C上,·=0,3||·||=-5·,||=2,過點(diǎn)F2且與坐標(biāo)軸不垂直的直線交橢圓于P,Q兩點(diǎn).
(1)求橢圓C的方程;
(2)線段OF2(O為坐標(biāo)原點(diǎn))上是否存在點(diǎn)M(m,0),使得··?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓過點(diǎn),離心率為.
(1)求橢圓的方程;
(2)求過點(diǎn)且斜率為的直線被橢圓所截得線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,|AB|=2,|BC|=2.E,F(xiàn),G,H分別是矩形四條邊的中點(diǎn),分別以HF,EG所在的直線為x軸,y軸建立平面直角坐標(biāo)系,已知=λ,=λ,其中0<λ<1.

(1)求證:直線ER與GR′的交點(diǎn)M在橢圓Γ:+y2=1上;
(2)若點(diǎn)N是直線l:y=x+2上且不在坐標(biāo)軸上的任意一點(diǎn),F(xiàn)1、F2分別為橢圓Γ的左、右焦點(diǎn),直線NF1和NF2與橢圓Γ的交點(diǎn)分別為P、Q和S、T.是否存在點(diǎn)N,使得直線OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿足kOP+kOQ+kOS+kOT=0?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,是橢圓的左、右頂點(diǎn),橢圓的離心率為,右準(zhǔn)線的方程為.

(1)求橢圓方程;
(2)設(shè)是橢圓上異于的一點(diǎn),直線于點(diǎn),以為直徑的圓記為. ①若恰好是橢圓的上頂點(diǎn),求截直線所得的弦長(zhǎng);
②設(shè)與直線交于點(diǎn),試證明:直線軸的交點(diǎn)為定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓C的焦點(diǎn)在軸上,焦距為2,直線n:x-y-1=0與橢圓C交于A、B兩點(diǎn),F(xiàn)1是左焦點(diǎn),且,則橢圓C的標(biāo)準(zhǔn)方程是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)A(x1,y1),B(x2,y2)是橢圓C=1(a>b>0)上兩點(diǎn),已知m,n,若m·n=0且橢圓的離心率e,短軸長(zhǎng)為2,O為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)試問△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體中,為側(cè)面所在平面上的一個(gè)動(dòng)點(diǎn),且到平面的距離是到直線距離的倍,則動(dòng)點(diǎn)的軌跡為(   )
A.橢圓B.雙曲線C.拋物線D.圓

查看答案和解析>>

同步練習(xí)冊(cè)答案