18.已知定義域?yàn)镽的奇函數(shù)f(x)的圖象是一條連續(xù)不斷的曲線,當(dāng)x∈(1,+∞)時,f′(x)<0;當(dāng)x∈(0,1)時f′(x)>0,且f(2)=0,則關(guān)于x的不等式(x+1)f(x)>0的解集為(-2,-1)∪(0,2).

分析 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得極值與最值,又函數(shù)f(x)為R上的奇函數(shù),且f(2)=0,可得圖象:對x與-1的大小關(guān)系分類討論即可得出.

解答 解:當(dāng)x∈(1,+∞)時,f′(x)<0;當(dāng)x∈(0,1)時,f′(x)>0,可知:當(dāng)x=1時,函數(shù)f(x)取得極大值即為最大值,又函數(shù)f(x)為R上的奇函數(shù),且f(2)=0,可得圖象:
關(guān)于x的不等式(x+1)f(x)>0(x≠-1)等價于:
$\left\{\begin{array}{l}{x>-1}\\{f(x)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x<-1}\\{f(x)<0}\end{array}\right.$,
解得:0<x<2,或-2<x<-1.
∴不等式(x+1)f(x)>0的解集為(-2,-1)∪(0,2).
故答案為:(-2,-1)∪(0,2).

點(diǎn)評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值最值與圖象、函數(shù)的奇偶性、不等式的解法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在某項(xiàng)娛樂活動的海選過程中,評分人員需對同批次的選手進(jìn)行考核并評分,并將其得分作為該選手的成績,成績大于等于60分的選手定為合格選手,直接參加第二輪比賽,不超過40分的選手將直接被淘汰,成績在(40,60)內(nèi)的選手可以參加復(fù)活賽,如果通過,也可以參加第二輪比賽.
(1)已知成績合格的200名參賽選手成績的頻率分布直方圖如圖,估計這200名參賽選手的成績平均數(shù)和中位數(shù);
(2)根據(jù)已有的經(jīng)驗(yàn),參加復(fù)活賽的選手能夠進(jìn)入第二輪比賽的概率如表:
參賽選手成績所在區(qū)間 (40,50](50,60)
 每名選手能夠進(jìn)入第二輪的概率$\frac{1}{2}$$\frac{2}{3}$
假設(shè)每名選手能否通過復(fù)活賽相互獨(dú)立,現(xiàn)有3名選手的成績分別為(單位:分)45,52,58,記這3名選手在復(fù)活賽中通過的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=({\sqrt{3}sinωx-cosωx})•cosωx+\frac{1}{2}$(其中ω>0)的最小正周期為π.
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)已知△ABC的內(nèi)角A、B、C的對邊分別是a、b、c,滿足(2b-a)cosC=c•cosA,且f(B)恰是f(x)的最大值,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)$y=\frac{x}{2}+sinx$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.等差數(shù)列{an}中,前n項(xiàng)和為Sn,a1>0,S12•S13<0則n為何值時,Sn最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c.若B=45°,C=60°,$AB=3\sqrt{2}$,則AC的值等于(  )
A.2$\sqrt{3}$B.4$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.命題“若a>1,則a2>1”的逆否命題是若a2≤1,則a≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)用輾轉(zhuǎn)相除法求779與247的最大公約數(shù).
(2)利用秦九韶算法求多項(xiàng)式f(x)=2x5+4x4-2x3+8x2+7x+4當(dāng)x=3的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖所示,把1,3,6,10,15,21,…這些數(shù)叫作三角形數(shù),這是因?yàn)檫@些數(shù)目的點(diǎn)可以排成一個正三角形,試求第九個三角形數(shù)是( 。
A.44B.45C.46D.47

查看答案和解析>>

同步練習(xí)冊答案