13.等差數(shù)列{an}中,前n項(xiàng)和為Sn,a1>0,S12•S13<0則n為何值時(shí),Sn最大?

分析 設(shè)數(shù)列的公差為d,由a1>0,S12•S13<0,可得d<0.Sn=$\fracoeme6uq{2}$n2+$({a}_{1}-\fracowoe4ei{2})$n,利用二次函數(shù)的單調(diào)性可得:12<m<13,拋物線的對(duì)稱軸$6<\frac{m}{2}$<6.5,進(jìn)而得出.

解答 解:設(shè)數(shù)列的公差為d,∵a1>0,S12•S13<0,∴d<0.
Sn=na1+$\frac{n(n-1)}{2}$d=$\fracyw62oke{2}$n2+$({a}_{1}-\frac42am0ku{2})$n,
可得Sn是過(guò)原點(diǎn)的關(guān)于n的二次函數(shù),由條件可知開(kāi)口向下;設(shè)m是拋物線與x軸的另一個(gè)交點(diǎn),則12<m<13,則拋物線的對(duì)稱軸$6<\frac{m}{2}$<6.5,
∵n為正整數(shù),∴S6最大.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、二次函數(shù)的圖象與性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知△ABC,若存在△A1B1C1,滿足$\frac{cosA}{sin{A}_{1}}$=$\frac{cosB}{cos{B}_{1}}$=$\frac{cosC}{sin{C}_{1}}$=1,則稱△A1B1C1是△ABC的一個(gè)“友好”三角形.若等腰△ABC存在“友好”三角形,則其頂角的度數(shù)為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下x,f(x)對(duì)應(yīng)值表:
x123456
f(x)132.5210.5-7.5611.5-53.76-126.8
函數(shù)f(x)在區(qū)間[1,6]上有零點(diǎn)至少有( 。
A.6個(gè)B.5個(gè)C.4個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知a,b∈R+,求證$\sqrt{{a^2}+{b^2}}≥\frac{{\sqrt{2}}}{2}(a+b)$(用分析法證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,直線y=4與y軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且|QF|=$\frac{5}{4}|PQ|$
(1)求C的方程     
(2)過(guò)F的直線l與C相交于A,B兩點(diǎn),計(jì)算$\frac{1}{|AF|}+\frac{1}{|BF|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知定義域?yàn)镽的奇函數(shù)f(x)的圖象是一條連續(xù)不斷的曲線,當(dāng)x∈(1,+∞)時(shí),f′(x)<0;當(dāng)x∈(0,1)時(shí)f′(x)>0,且f(2)=0,則關(guān)于x的不等式(x+1)f(x)>0的解集為(-2,-1)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.“低碳經(jīng)濟(jì)”是促進(jìn)社會(huì)可持續(xù)發(fā)展的推進(jìn)器,某企業(yè)現(xiàn)有100萬(wàn)元資金可用于投資,如果投資“傳統(tǒng)型”經(jīng)濟(jì)項(xiàng)目,一年后可能獲利20%,可能損失10%,也可能不賠不賺,這三種情況發(fā)生的概率分別為$\frac{3}{5}$,$\frac{1}{5}$,$\frac{1}{5}$;如果投資“低碳型”經(jīng)濟(jì)項(xiàng)目,一年后可能獲利30%,也可能損失20%,這兩種情況發(fā)生的概率分別為a和b(其中a+b=1).
(1)如果把100萬(wàn)元投資“傳統(tǒng)型”經(jīng)濟(jì)項(xiàng)目,用ξ表示投資收益(投資收益=回收資金-投資資金),求ξ的概率分布及均值(數(shù)學(xué)期望)E(ξ);
(2)如果把100萬(wàn)元投資“低碳型”經(jīng)濟(jì)項(xiàng)目,預(yù)測(cè)其投資收益均值會(huì)不低于投資“傳統(tǒng)型”經(jīng)濟(jì)項(xiàng)目的投資收益均值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)函數(shù)f(x)=2sin(2x+φ)(-π<φ<0),y=f(x)的圖象的一條對(duì)稱軸是直線x=$\frac{π}{8}$.
(1)在答題卡上用“五點(diǎn)法”列表并作出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象;
(2)用文字說(shuō)明通過(guò)函數(shù)圖象變換,由函數(shù)y=sinx的圖象得到函數(shù)y=f(x)的過(guò)程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某人騎自行車(chē)去A商場(chǎng)購(gòu)物,行至叉路口B處,本應(yīng)沿左前方道路直接到達(dá)A商場(chǎng),但他誤沿右前方的道路行駛,已知左右兩條道路夾角為30°.行駛了500m到達(dá)C處后,他左拐彎上了一條可以直接到達(dá)A商場(chǎng)的道路.已知他左拐后行駛的道路與剛才行駛的道路夾角為75°(道路的夾角為銳角),試求他比直接到達(dá)A商場(chǎng)多走了多少m?

查看答案和解析>>

同步練習(xí)冊(cè)答案