分析 (1)如果把100萬元投資甲項目,根據(jù)市場分析知道:一年后可能獲利20%,可能損失10%,可能不賠不賺,這三種情況發(fā)生的概率分別為$\frac{3}{5}$,$\frac{1}{5}$,$\frac{1}{5}$,則可得到ξ的可能取值為20,0,-10.然后分別求出概率,由期望公式即可得到答案.
(2)若把100萬元投資投資乙項目的平均收益不低于投資甲項目的平均收益,故可以先求出投資乙項目ξ的期望值,然后使其大于等于甲項目的期望,解出α的取值范圍即可得到答案.
解答 解 (1)依題意知ξ的可能取值為20,0,-10,ξ的分布列為
η | 20 | 0 | -10 |
P | $\frac{3}{5}$ | $\frac{1}{5}$ | $\frac{1}{5}$ |
η | 30 | -20 |
P | a | b |
點評 此題主要考查離散型隨機變量的期望的問題,以及用期望值估計實際問題,對學生靈活應用能力要求較高,屬于中檔題目.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{2}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,0)∪(0,+∞) | B. | [-1,0)∪(0,+∞) | C. | (-1,+∞) | D. | [-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4$\sqrt{3}$ | B. | -4$\sqrt{3}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | -$\frac{4\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{10}$ | B. | 10 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com