【題目】已知動點到直線的距離比到定點的距離大1.
(1)求動點的軌跡的方程.
(2)若為直線上一動點,過點作曲線的兩條切線,,切點為,,為的中點.
①求證:軸;
②直線是否恒過一定點?若是,求出這個定點的坐標;若不是,請說明理由.
【答案】(1);(2)①證明見解析;②.
【解析】
(1)由題意知,動點到直線的距離等于到定點的距離,符合拋物線的定義,求軌跡的方程為;
(2)①設(shè)動點,,,利用導數(shù)求出切線的方程分別為:、,從而有,為方程的兩根,證明點的橫坐標與點的橫坐標相等,從而證得軸;
②由①中的結(jié)論,把直線的方程寫成含有參數(shù)的形式,即
并把方程看成關(guān)于的一次函數(shù),從而得到定點為。
(1)由動點到直線的距離比到定點的距離大1得,
動點到直線的距離等于到定點的距離,
所以點的軌跡為頂點在原點、開口向上的拋物線,其中,
軌跡方程為.
(2)①設(shè)切點,,,所以切線的斜率為,
切線.
設(shè),則有,化簡得.
同理可得.
所以,為方程的兩根.
則有,,所以.
因此軸.
② 因為,
所以.又因為,
所以直線,即.
即直線過定點.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求曲線的普通方程及直線的直角坐標方程;
(2)已知點為曲線上的動點,當點到直線的距離最大時,求點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】電子計算機誕生于20世紀中葉,是人類最偉大的技術(shù)發(fā)明之一.計算機利用二進制存儲信息,其中最基本單位是“位(bit)”,1位只能存放2種不同的信息:0或l,分別通過電路的斷或通實現(xiàn).“字節(jié)(Byte)”是更大的存儲單位,1Byte=8bit,因此1字節(jié)可存放從00000000(2)至11111111(2)共256種不同的信息.將這256個二進制數(shù)中,所有恰有相鄰兩位數(shù)是1其余各位數(shù)均是0的所有數(shù)相加,則計算結(jié)果用十進制表示為
A. 254B. 381C. 510D. 765
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)當時,
①求曲線在點處的切線方程;
②求函數(shù)在區(qū)間上的值域.
(2)對于任意,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的直角坐標方程與直線的極坐標方程;
(2)若射線與曲線交于點(不同于原點),與直線交于點,直線與極軸所在直線交于點.求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】環(huán)保部門要對所有的新車模型進行廣泛測試,以確定它的行車里程的等級,右表是對 100 輛新車模型在一個耗油單位內(nèi)行車里程(單位:公里)的測試結(jié)果.
(Ⅰ)做出上述測試結(jié)果的頻率分布直方圖,并指出其中位數(shù)落在哪一組;
(Ⅱ)用分層抽樣的方法從行車里程在區(qū)間[38,40)與[40,42)的新車模型中任取5輛,并從這5輛中隨機抽取2輛,求其中恰有一個新車模型行車里程在[40,42)內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com