【題目】已知{an}為等比數(shù)列,a1=1,a6=243.Sn為等差數(shù)列{bn}的前n項(xiàng)和,b1=1,S5=25.
(1)求{an}和{bn}的通項(xiàng)公式;
(2)設(shè)Tn=a1b1+a2b2+…+anbn , 求Tn

【答案】
(1)解:設(shè){an}的公比為q,數(shù)列{bn}的公差為d,

a6=a1q5=q5=243,S5=5b1+ =5+10d=25,

解得q=3,d=2.

.bn=1+2(n﹣1)=2n﹣1.


(2)∵Tn=a1b1+a2b2+…+anbn

,①

,②

①﹣②得: ,

∴Tn=(n﹣1)×3n+1.


【解析】(1)根據(jù)等差數(shù)列,等比數(shù)列的通項(xiàng)公式,求和公式列方程解出公差與公比,得出通項(xiàng)公式;(2)使用錯(cuò)位相減法求和.
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a為實(shí)數(shù),記函數(shù)f(x)=a + + 的最大值為g(a).
(1)設(shè)t= + ,求t的取值范圍,并把f(x)表示為t的函數(shù)m(t);
(2)求g(a);
(3)試求滿(mǎn)足g(a)=g( )的所有實(shí)數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體的底面是邊長(zhǎng)為3的正方形,且,

(Ⅰ)求證:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)的定義域?yàn)?0,+∞),且對(duì)一切x>0,y>0都有,當(dāng)時(shí),有

(1)求f(1)的值;

(2)判斷f(x)的單調(diào)性并加以證明;

(3)若f(4)=2,求f(x)在[1,16]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(1,﹣1),B(4,0),C(2,2),平面區(qū)域D是所有滿(mǎn)足 (1<λ≤a,1<μ≤b)的點(diǎn)P(x,y)組成的區(qū)域.若區(qū)域D的面積為4,則ab﹣a﹣b=(
A.﹣1
B.﹣
C.
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿(mǎn)足a1=9,an+1=an+2n+5;數(shù)列{bn}滿(mǎn)足b1= ,bn+1= bn(n≥1).
(1)求an , bn;
(2)記數(shù)列{ }的前n項(xiàng)和為Sn , 證明: ≤Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答
(1)已知正數(shù)x,y滿(mǎn)足x+2y=1,求 1 x + 1 y 的最小值
(2)已知x>1,求:y=x+最小值,并求相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)直線(xiàn)經(jīng)過(guò)點(diǎn)傾斜角為.(10分).

(1)寫(xiě)出直線(xiàn)的參數(shù)方程

(2)求直線(xiàn)與直線(xiàn)的交點(diǎn)到點(diǎn)的距離

(3)設(shè)與圓 相交于兩點(diǎn),求點(diǎn)兩點(diǎn)的距離的和與積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),(

(1)當(dāng)時(shí),求函數(shù)處的切線(xiàn)方程;

(2)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍;

(3)求函數(shù)在區(qū)間的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案