【題目】已知數(shù)列{an}滿足a1=9,an+1=an+2n+5;數(shù)列{bn}滿足b1= ,bn+1= bn(n≥1).
(1)求an , bn;
(2)記數(shù)列{ }的前n項和為Sn , 證明: ≤Sn

【答案】
(1)解:由an+1=an+2n+5得an+1﹣an=2n+5,

則a2﹣a1=7,

a3﹣a2=9,

an1﹣an2=2(n﹣2)+5,

an﹣an1=2(n﹣1)+5=2n+3

等式兩邊同時相加得

an﹣a1= ×(n﹣1)=(5+n)(n﹣1)=n2+4n﹣5,

則an=a1+n2+4n﹣5=n2+4n﹣5+9=n2+4n+4,

所以數(shù)列{an}的通項公式為

又∵ , ,

,∴ , , ,…, ,

將上述(n﹣1)個式子相乘,得 ,即


(2)解:∵

= ,

,∴


【解析】(1)利用數(shù)列的遞推關(guān)系,利用累加法和累積法進(jìn)行求解即可.(2)求出數(shù)列{ }的通項公式,利用裂項法進(jìn)行求解,結(jié)合不等式的性質(zhì)進(jìn)行證明即可.
【考點精析】根據(jù)題目的已知條件,利用數(shù)列的前n項和和數(shù)列的通項公式的相關(guān)知識可以得到問題的答案,需要掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的定義域是R,則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的兩頂點坐標(biāo)A(﹣1,0),B(1,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=1(從圓外一點到圓的兩條切線段長相等),動點C的軌跡為曲線M.

(I)求曲線M的方程;

(Ⅱ)設(shè)直線BC與曲線M的另一交點為D,當(dāng)點A在以線段CD為直徑的圓上時,求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,底面是直角梯形,,,上的點.

)求證:平面平面;

的中點,且二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}為等比數(shù)列,a1=1,a6=243.Sn為等差數(shù)列{bn}的前n項和,b1=1,S5=25.
(1)求{an}和{bn}的通項公式;
(2)設(shè)Tn=a1b1+a2b2+…+anbn , 求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式mx2+2x+6m>0,在下列條件下分別求m的值或取值范圍:
(1)不等式的解集為{x|2<x<3};
(2)不等式的解集為R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}中,已知a1=2,a4=16.
(1)求數(shù)列{an}的通項公式an;
(2)若a3 , a5分別是等差數(shù)列{bn}的第4項和第16項,求數(shù)列{bn}的通項公式及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知不等式的對任意實數(shù)恒成立.

(Ⅰ)求實數(shù)的最小值;

(Ⅱ)若,且滿足,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,側(cè)面底面, , , , ,點在棱上,且,點在棱上,且平面.

(1)求證: 平面

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案