分析 本題考查的知識點是古典概型的意義,關鍵是要找出連續(xù)拋擲兩次骰子分別得到的點數m,n作為點P的坐標所得P點的總個數,及點P(m,n)落在以坐標原點為圓心,4為半徑的圓內的個數,代入古典概型計算公式即可求解.
解答 解:連續(xù)拋擲兩次骰子分別得到的點數m,n作為點P的坐標所得P點有:
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).共36個
其中點P(m,n)落在以坐標原點為圓心,4為半徑的圓內的有:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2)共8個
故點P(m,n)落在以坐標原點為圓心,4為半徑的圓內的概率P=$\frac{2}{9}$,
故答案為$\frac{2}{9}$.
點評 古典概型要求所有結果出現的可能性都相等,強調所有結果中每一結果出現的概率都相同.弄清一次試驗的意義以及每個基本事件的含義是解決問題的前提,正確把握各個事件的相互關系是解決問題的關鍵.解決問題的步驟是:計算滿足條件的基本事件個數,及基本事件的總個數,然后代入古典概型計算公式進行求解.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 若a<b,則a-1<b-1 | B. | 若a-1>b-1,則a>b | C. | 若a≤b,則a-1≤b-1 | D. | 若a-1≤b-1,則a≤b |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -3 | B. | $\frac{1}{8}$ | C. | 3 | D. | 8 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com