【題目】隨著共享單車的成功運(yùn)營(yíng),更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨機(jī)抽取人對(duì)共享產(chǎn)品對(duì)共享產(chǎn)品是否對(duì)日常生活有益進(jìn)行了問(wèn)卷調(diào)查,并對(duì)參與調(diào)查的人中的性別以及意見(jiàn)進(jìn)行了分類,得到的數(shù)據(jù)如下表所示:

(Ⅰ)根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)的概率不超過(guò)的前提下,認(rèn)為對(duì)共享產(chǎn)品的態(tài)度與性別有關(guān)系?

Ⅱ)為了答謝參與問(wèn)卷調(diào)查的人員,該公司對(duì)參與本次問(wèn)卷調(diào)查的人員隨機(jī)發(fā)放張超市的購(gòu)物券,購(gòu)物券金額以及發(fā)放的概率如下:

現(xiàn)有甲、乙兩人領(lǐng)取了購(gòu)物券,記兩人領(lǐng)取的購(gòu)物券的總金額為,求的分布列和數(shù)學(xué)期望.

參考公式 .

臨界值表:

【答案】(Ⅰ)答案見(jiàn)解析;(Ⅱ)答案見(jiàn)解析.

【解析】試題分析:

()依題意計(jì)算的觀測(cè)值,則可以在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為對(duì)共享產(chǎn)品的態(tài)度與性別有關(guān)系.

()依題意, 的可能取值為 , ,且 , ,據(jù)此得出分布列,計(jì)算數(shù)學(xué)期望.

試題解析:

Ⅰ)依題意,在本次的實(shí)驗(yàn)中, 的觀測(cè)值

故可以在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為對(duì)共享產(chǎn)品的態(tài)度與性別有關(guān)系.

Ⅱ)依題意, 的可能取值為, ,

, ,

的分布列為:

故所求的數(shù)學(xué)期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)圖象上不同兩點(diǎn) 處切線的斜率分別是, ,規(guī)定為線段的長(zhǎng)度)叫做曲線在點(diǎn)之間的“彎曲度”,給出以下命題:

①函數(shù)圖象上兩點(diǎn)的橫坐標(biāo)分別為1和2,則

②存在這樣的函數(shù),圖象上任意兩點(diǎn)之間的“彎曲度”為常數(shù);

③設(shè)點(diǎn), 是拋物線上不同的兩點(diǎn),則

④設(shè)曲線是自然對(duì)數(shù)的底數(shù))上不同兩點(diǎn), ,且,若恒成立,則實(shí)數(shù)的取值范圍是

其中真命題的序號(hào)為__________.(將所有真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,且 .

(Ⅰ)設(shè) ,求的單調(diào)區(qū)間及極值;

(Ⅱ)證明:函數(shù)的圖象在函數(shù)的圖象的上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 ,其焦距為2,離心率為

1)求橢圓的方程;

2)設(shè)橢圓的右焦點(diǎn)為 軸上一點(diǎn),滿足,過(guò)點(diǎn)作斜率不為0的直線交橢圓于兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C1以直線所過(guò)的定點(diǎn)為一個(gè)焦點(diǎn),且短軸長(zhǎng)為4.

Ⅰ)求橢圓C1的標(biāo)準(zhǔn)方程;

Ⅱ)已知橢圓C2的中心在原點(diǎn),焦點(diǎn)在y軸上,且長(zhǎng)軸和短軸的長(zhǎng)分別是橢圓C1的長(zhǎng)軸和短軸的長(zhǎng)的(1),過(guò)點(diǎn)C(1,0)的直線l與橢圓C2交于AB兩個(gè)不同的點(diǎn),若,求△OAB的面積取得最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線與橢圓交于點(diǎn), 軸上方),且.設(shè)點(diǎn)軸上的射影為,三角形的面積為2(如圖1.

1)求橢圓的方程;

2)設(shè)平行于的直線與橢圓相交,其弦的中點(diǎn)為.

①求證:直線的斜率為定值;

②設(shè)直線與橢圓相交于兩點(diǎn), 軸上方),點(diǎn)為橢圓上異于, , , 一點(diǎn),直線于點(diǎn), 于點(diǎn),如圖2,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線和圓,直線經(jīng)過(guò)拋物線的焦點(diǎn),依次交拋物線與圓四點(diǎn), ,的值為(

A. B. C. 1 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究某藥品的療效,選取若干名志愿者進(jìn)行臨床試驗(yàn),所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號(hào)為第一組,第二組,…,第五組,如圖是根據(jù)試驗(yàn)數(shù)據(jù)制成的頻率分布直方圖.已知第一組與第二組共有20人,第三組中沒(méi)有療效的有6人,則第三組中有療效的人數(shù)為(  )

A. 6 B. 8

C. 12 D. 18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是 (為參數(shù)).

(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;

(2)若直線與曲線相交于兩點(diǎn),且,求直線的傾斜角的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案