10.某實(shí)心鋼質(zhì)工件的三視圖如圖所示,其中側(cè)視圖為等腰三角形,俯視圖是一個(gè)半徑為3的半圓,現(xiàn)將該工件切削加工成一個(gè)球體,則該球體的最大體積為(  )
A.$\frac{4π}{3}$B.$\frac{2π}{3}$C.πD.$\frac{3π}{2}$

分析 由三視圖知幾何體為半個(gè)圓錐,根據(jù)三視圖的數(shù)據(jù)求底面面積與高,求出其軸截面的內(nèi)切球的半徑,代入公式計(jì)算即可.

解答 解:由題目所給三視圖可得,該幾何體為圓錐的一半,圓錐的底面半徑為3,高為4,所以母線(xiàn)長(zhǎng)為5,
設(shè)其軸截面的內(nèi)切球的半徑為r,則$\frac{1}{2}×(3+4+5)r=\frac{1}{2}×3×4$,∴r=1,
∴該球體的最大體積為$\frac{4}{3}π$,
故選A.

點(diǎn)評(píng) 本題考查三視圖求表面積、體積,考查空間想象能力,計(jì)算能力,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.從一批產(chǎn)品中取出三件產(chǎn)品,設(shè)A=“三件產(chǎn)品全不是次品”,B=“三件產(chǎn)品全是次品”,C=“三件產(chǎn)品至少有一件是次品”,則下列結(jié)論正確的是( 。
A.A與B互斥B.任何兩個(gè)均互斥C.B與C互斥D.任何兩個(gè)均對(duì)立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.將函數(shù)f(x)=$\sqrt{3}$sinx-cosx的圖象向右平移m個(gè)單位(m>0),若所得圖象對(duì)應(yīng)的函數(shù)為偶函數(shù),則m的最小值是( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{8}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知f(x)=x2-bx+a,且f(0)=3,f(2-x)=f(x),則下列關(guān)系成立的是(  )
A.f(bx)≥f(axB.f(bx)≤f(ax
C.f(bx)<f(axD.f(bx)與f(ax)的大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在空間中,a,b是兩條不同的直線(xiàn),α,β是兩個(gè)不同的平面,則下列命題中真命題的是( 。
A.若α∥β,a?α,則a∥βB.若a?α,b?β,α⊥β,則a⊥b
C.若a∥α,a∥b,則b∥αD.若a∥α,b∥α,則a∥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)的定義域是[0,1],則函數(shù)F(x)=f[log$\frac{1}{2}$(3-x)]的定義域( 。
A.{x|0≤x<1}B.{x|2≤x<$\frac{5}{2}$}C.{x|2≤x≤$\frac{5}{2}$}D.{x|2<x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,PA垂直于矩形ABCD所在的平面,E、F分別是AB、PD的中點(diǎn),∠ADP=45°.
(1)求證:AF∥平面PCE.
(2)求證:平面PCD⊥平面PCE.
(3)若AD=2,CD=3,求點(diǎn)F到平面PCE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.$\overrightarrow a$=(-1,-5,-2),$\overrightarrow b$=(x,2,x+2),若$\overrightarrow a⊥\overrightarrow b$,則x=( 。
A.0B.-6C.$-\frac{14}{3}$D.±6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在${({\sqrt{x}+\frac{3}{x}})^n}$的展開(kāi)式中,各二項(xiàng)式系數(shù)之和為64,則展開(kāi)式中常數(shù)項(xiàng)為( 。
A.135B.105C.30D.15

查看答案和解析>>

同步練習(xí)冊(cè)答案