(12分)已知圓C1:與圓C2:相交于A、B兩點(diǎn)。
⑴ 求公共弦AB的長;
⑵ 求圓心在直線上,且過A、B兩點(diǎn)的圓的方程;
⑶ 求經(jīng)過A、B兩點(diǎn)且面積最小的圓的方程。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013年山東濟(jì)寧泗水一中高二12月質(zhì)量檢測理科數(shù)學(xué)試卷(帶解析) 題型:解答題
(本小題滿分12分)
已知圓C1的方程為(x-2)2+(y-1)2=,橢圓C2的方程為,C2的離心率為,如果C1與C2相交于A、B兩點(diǎn),且線段AB恰為圓C1的直徑,試求:
(1)直線AB的方程;(2)橢圓C2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河北省正定中學(xué)高三下學(xué)期第二次考試數(shù)學(xué)(理) 題型:解答題
(本題滿分12分)已知橢圓的離心率為,
直線與以原點(diǎn)為圓心、以橢圓的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線過點(diǎn)F1,且垂直于橢圓的長軸,動直線垂直于點(diǎn)P,線段PF2的垂直平分線交于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;
(Ⅲ)若AC、BD為橢圓C1的兩條相互垂直的弦,垂足為右焦點(diǎn)F2,求四邊形ABCD的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆福建省高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
已知直線l:y=x,圓C1的圓心為(3,0),且經(jīng)過(4,1)點(diǎn).
(1)求圓C1的方程;
(2)若圓C2與圓C1關(guān)于直線l對稱,點(diǎn)A、B分別為圓C1、C2上任意一點(diǎn),求|AB|的最小值;
(3)已知直線l上一點(diǎn)M在第一象限,兩質(zhì)點(diǎn)P、Q同時從原點(diǎn)出發(fā),點(diǎn)P以每秒1個單位的速度沿x軸正方向運(yùn)動,點(diǎn)Q以每秒個單位沿射線OM方向運(yùn)動,設(shè)運(yùn)動時間為t秒.問:當(dāng)t為何值時直線PQ與圓C1相切?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆山東濟(jì)寧泗水一中高二12月質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
已知圓C1的方程為(x-2)2+(y-1)2=,橢圓C2的方程為,C2的離心率為,如果C1與C2相交于A、B兩點(diǎn),且線段AB恰為圓C1的直徑,試求:
(1)直線AB的方程;(2)橢圓C2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省商丘市高三第二次模擬考試數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
已知橢圓C1和拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn),從它們每條曲線上至少取兩個點(diǎn),將其坐標(biāo)記錄于下表中:
x |
5 |
- |
4 |
||
y |
2 |
0 |
-4 |
- |
(Ⅰ)求C1和C2的方程;
(Ⅱ)過點(diǎn)S(0,-)且斜率為k的動直線l交橢圓C1于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)D,使以線段AB為直徑的圓恒過這個點(diǎn)?若存在,求出D的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com