7.已知點(diǎn)A(3,4),F(xiàn)是拋物線y2=8x的焦點(diǎn),M是拋物線上的動(dòng)點(diǎn),則|MA|+|MF|的最小值為( 。
A.3B.4C.5D.6

分析 求出焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,把S轉(zhuǎn)化為|MA|+|PM|,利用 當(dāng)P、A、M三點(diǎn)共線時(shí),|MA|+|PM|取得最小值.

解答 解:由題意得 F(2,0),準(zhǔn)線方程為 x=-2,
設(shè)點(diǎn)M到準(zhǔn)線的距離為d=|PM|,
則由拋物線的定義得|MA|+|MF|=|MA|+|PM|,
故當(dāng)P、A、M三點(diǎn)共線時(shí),|MF|+|MA|取得最小值為|AP|=3-(-2)=5,
故選:C.

點(diǎn)評(píng) 本題考查拋物線的定義和性質(zhì)得應(yīng)用,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,解答的關(guān)鍵利用是拋物線定義,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.過(guò)點(diǎn)P(-1,0)作曲線y=ex的切線l.
(Ⅰ)求l的方程;
(Ⅱ)若A(x1,$\frac{a}{{{e^{x_1}}}}$),B(x2,$\frac{a}{{{e^{x_2}}}}$)是直線l上的兩個(gè)不同點(diǎn),求證:x1+x2<-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.三棱臺(tái)ABC-A1B1C1中,AB:A1B1=1:3,則三棱錐A1-ABC與B-A1B1C的體積比為( 。
A.$1:\sqrt{3}$B.1:3C.$1:3\sqrt{3}$D.1:9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知點(diǎn)P是拋物線x2=4y上的動(dòng)點(diǎn),點(diǎn)P在其準(zhǔn)線上的射影是點(diǎn)M,點(diǎn)A的坐標(biāo)(4,2),則|PA|+|PM|的最小值是( 。
A.$\sqrt{17}$B.$\sqrt{13}$C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知a、b、c>1,且a+b+c=9.證明:$\sqrt{ab+bc+ca}$≤$\sqrt{a}$+$\sqrt$+$\sqrt{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知拋物線y2=ax(a>0),經(jīng)過(guò)焦點(diǎn)且傾斜角為135°的直線被拋物線所截得的弦長(zhǎng)為8,試求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.拋物線的頂點(diǎn)為原點(diǎn),焦點(diǎn)在x軸上.直線2x-y=0與拋物線交于A、B兩點(diǎn),P(1,2)為線段AB的中點(diǎn),則拋物線的方程為y2=8x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知拋物線C:x2=8y.AB是拋物線C的動(dòng)弦,且AB過(guò)F(0,2),分別以A、B為切點(diǎn)作軌跡C的切線,設(shè)兩切線交點(diǎn)為Q,證明:AQ⊥BQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)正實(shí)數(shù)x,y,z,w滿足2012x2=2013y2=2014z2=2015w2,$\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{z}$+$\frac{1}{w}$=1,試求$\sqrt{2012x+2013y+2014z+2015w}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案