13.已知直線l過點P(2,3),且與兩條坐標(biāo)軸在第一象限所圍成的三角形的面積為12,則直線l的方程為3x+2y-12=0.

分析 寫出直線的截距式方程,根據(jù)要求條件參數(shù)的值,得到本題結(jié)論.

解答 解:設(shè)l在x軸、y軸上的截距分別為a,b(a>0,b>0),
則直線l的方程為$\frac{x}{a}$+$\frac{y}$=1
∵P(2,3)在直線l上,
∴$\frac{2}{a}$+$\frac{3}$=1.
又由l與兩條坐標(biāo)軸在第一象限所圍成的三角形面積為12,
可得ab=24,
∴a=4,b=6,
∴直線l的方程為$\frac{x}{4}$+$\frac{y}{6}$=1,即3x+2y-12=0,
故答案為:3x+2y-12=0.

點評 本題考查了幾種形式的直線方程,本題難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.從5男3女共8名學(xué)生中選出4人組成志愿者服務(wù)隊,則服務(wù)隊中至少有1名女生的不同選法共有65種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的2倍且經(jīng)過點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交橢圓于A、B兩個不同點.
(1)求橢圓的標(biāo)準(zhǔn)方程以及m的取值范圍;
(2)求證直線MA,MB與x軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.將函數(shù)y=2cos(x-$\frac{π}{3}$)的圖象上所有的點的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)的圖象( 。
A.關(guān)于點(-$\frac{π}{6}$,0)對稱B.關(guān)于點($\frac{5π}{12}$,0)對稱
C.關(guān)于直線x=-$\frac{π}{6}$對稱D.關(guān)于直線x=$\frac{5π}{12}$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=-$\frac{\sqrt{3}}{2}$sinx$-\frac{1}{2}$cosx+1
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)若x∈[0,$\frac{π}{2}$],且f(x)=$\frac{1}{3}$,求cosx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且bcosA=$\sqrt{3}$asinB.
(1)求角A的大;
(2)若a=1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知在($\frac{x}{2}$$-\frac{1}{\root{5}{x}}$)n的展開式中,第6項為常數(shù)項,則n=( 。
A.9B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+5,x≥0}\\{x+5,x<0}\end{array}\right.$.
(1)求f(f(-2))的值;
(2)解不等式f(x)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知$\overrightarrow{a}$=(cosωx,sinωx),$\overrightarrow$=(2cosωx+sinωx,cosωx),x∈R,ω>0,記$f(x)=\overrightarrow a•\overrightarrow b$,且該函數(shù)的最小正周期是$\frac{π}{4}$.
(1)求ω的值;
(2)求函數(shù)f(x)的最大值,并且求使f(x)取得最大值的x的集合.

查看答案和解析>>

同步練習(xí)冊答案