5.復(fù)數(shù)$\frac{i}{2+i}$(i是虛數(shù)單位)的模長(zhǎng)是(  )
A.$\frac{1}{3}$B.$\frac{1}{5}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{5}}{5}$

分析 直接利用復(fù)數(shù)的模的運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:復(fù)數(shù)$\frac{i}{2+i}$的模,即:$|\frac{i}{2+i}|$=$\frac{|i|}{|2+i|}$=$\frac{1}{\sqrt{{2}^{2}+{1}^{2}}}$=$\frac{\sqrt{5}}{5}$.
故選:D.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的模的求法,考查復(fù)數(shù)的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若A${\;}_{2n}^{3}$=10A${\;}_{n}^{3}$,則n=(  )
A.1B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y-3≤0}\\{x+3y-3≥0}\\{y-1≤0}\end{array}\right.$,則F(x,y)=log2(y+1)+log${\;}_{\frac{1}{2}}$(x+1)的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求($\frac{\sqrt{x}}{3}$+$\frac{1}{\sqrt{x}}$)12展開(kāi)式中的第7頂.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.?dāng)?shù)列$\frac{1}{n}$+$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{{n}^{2}}$的項(xiàng)數(shù)為n2-n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知集合A={x|(x-6)(x-2a-5)>0},集合B={x|[(a2+2)-x]•(2a-x)<0}
(1)若a=5,求集合A∩B;
(2)已知a$>\frac{1}{2}$,且“x∈A”是“x∈B”的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若Tn是等差數(shù)列{bn}的前n項(xiàng)和,則Tm,T2m-Tm,T3m-T2m,…也成等差數(shù)列,由此類(lèi)推,若Sn為等比數(shù)列{an}的前n項(xiàng)和,S4=1,S8=3,則a17+a18+a19+a20=( 。
A.14B.16C.18D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)g(x)的圖象如圖所示,下列數(shù)值排序正確的是( 。
A.0<g′(2)<g′(3)<g(3)-g(2)B.0<g′(3)<g(3)-g(2)<g′(2)C.0<g′(2)<g(3)-g(2)<g′(3)D.0<g(3)-g(2)<g′(2)<g′(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.f(x)=cos($\frac{π}{2}$-x)•cosx+$\sqrt{3}{sin^2}$x的最小正周期為π,單調(diào)遞減區(qū)間為[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈Z.

查看答案和解析>>

同步練習(xí)冊(cè)答案