16.過直線y=x+1上的點(diǎn)P作圓C:(x-1)2+(y-6)2=2的兩條切線l1,l2,當(dāng)直線l1,l2關(guān)于直線y=x+1對(duì)稱時(shí),|PC|=(  )
A.3B.2$\sqrt{2}$C.1+$\sqrt{2}$D.2

分析 判由題意,CP⊥l,|PC|為圓心到直線的距離,即可求出結(jié)論.

解答 解:由題意,CP⊥l,|PC|為圓心到直線的距離,即d=$\frac{|1-6+1|}{\sqrt{2}}$=2$\sqrt{2}$,
故選:B.

點(diǎn)評(píng) 本題是中檔題,考查直線與圓的位置關(guān)系,直線與圓相切的關(guān)系的應(yīng)用,考查計(jì)算能力,常考題型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知直線MN過橢圓$\frac{x^2}{2}+{y^2}=1$的左焦點(diǎn)F,與橢圓交于M,N兩點(diǎn).直線PQ過原點(diǎn)O與MN平行,且PQ與橢圓交于P,Q兩點(diǎn),則$\frac{{|PQ{|^2}}}{|MN|}$=$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線l過定點(diǎn)P(1,1),且傾斜角為$\frac{3π}{4}$,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的坐標(biāo)系中,曲線C的極坐標(biāo)方程為$ρ-\frac{3}{ρ}=2cosθ$.
(1)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于不同的兩點(diǎn)A、B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)中,既是偶函數(shù)又在(0,1)上單調(diào)遞增的是( 。
A.y=cosxB.y=$\sqrt{x}$C.y=2|x|D.y=|lgx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.?dāng)?shù)列{an}是公差為d(d≠0)的等差數(shù)列,Sn為其前n項(xiàng)和,a1,a2,a5成等比數(shù)列,
(Ⅰ)證明S1,S3,S9成等比數(shù)列;
(Ⅱ)設(shè)a1=1,bn=a${\;}_{{2}^{n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)的反函數(shù)是y=g(x),則函數(shù)y=f(-x)+2的反函數(shù)是y=-g(x-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)P為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上且在第一象限內(nèi)的點(diǎn),F(xiàn)1,F(xiàn)2分別是雙曲線的左、右焦點(diǎn),PF2⊥F1F2,x軸上有一點(diǎn)A且AP⊥PF1,E是AP的中點(diǎn),線段EF1與PF2交于點(diǎn)M.若|PM|=2|MF2|,則雙曲線的離心率是( 。
A.1$+\sqrt{2}$B.2$+\sqrt{2}$C.3$+\sqrt{2}$D.4$+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)z=$\frac{(1+i)^{3}}{(1-i)^{2}}$(其中i為虛數(shù)單位),則z的虛部為( 。
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.中國宋代的數(shù)學(xué)家秦九韶曾提出“三斜求積術(shù)”,即假設(shè)在平面內(nèi)有一個(gè)三角形,邊長(zhǎng)分別為a,b,c,三角形的面積S可由公式$S=\sqrt{p(p-a)(p-b)(p-c)}$求得,其中p為三角形周長(zhǎng)的一半,這個(gè)公式也被稱為海倫-秦九韶公式,現(xiàn)有一個(gè)三角形的邊長(zhǎng)滿足a+b=12,c=8,則此三角形面積的最大值為( 。
A.$4\sqrt{5}$B.$8\sqrt{5}$C.$4\sqrt{15}$D.$8\sqrt{15}$

查看答案和解析>>

同步練習(xí)冊(cè)答案