9.設(shè)P為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上且在第一象限內(nèi)的點,F(xiàn)1,F(xiàn)2分別是雙曲線的左、右焦點,PF2⊥F1F2,x軸上有一點A且AP⊥PF1,E是AP的中點,線段EF1與PF2交于點M.若|PM|=2|MF2|,則雙曲線的離心率是( 。
A.1$+\sqrt{2}$B.2$+\sqrt{2}$C.3$+\sqrt{2}$D.4$+\sqrt{2}$

分析 求出A的橫坐標,利用E是AP的中點,線段EF1與PF2交于點M,|PM|=2|MF2|,得出3c=$\frac{^{4}+2{a}^{2}{c}^{2}}{2{a}^{2}c}$,即可得出結(jié)論.

解答 解:由題意,P(c,$\frac{^{2}}{a}$),∴${k}_{{F}_{1}P}$=$\frac{^{2}}{2ac}$,
∴直線PA的方程為y-$\frac{^{2}}{a}$=-$\frac{2ac}{^{2}}$(x-c),
令y=0,可得x=$\frac{^{4}+2{a}^{2}{c}^{2}}{2{a}^{2}c}$,
∵E是AP的中點,線段EF1與PF2交于點M,|PM|=2|MF2|,
∴3c=$\frac{^{4}+2{a}^{2}{c}^{2}}{2{a}^{2}c}$,
∴e4-6e2+1=0,
∵e>1,∴e=1+$\sqrt{2}$,
故選A.

點評 本題考查雙曲線的方程與性質(zhì),考查中等坐標的運用,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.若等差數(shù)列{an}的前n項和Sn有最大值,且$\frac{{a}_{11}}{{a}_{10}}$<-1,那么令Sn取最小正值的項數(shù)n=( 。
A.15B.17C.19D.21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知P為直線l:2x-3y+4=0上一點,設(shè)點P到定點F(0,1)距離為d1,點P到y(tǒng)=0的距離為d2,若d1-d2=1,這樣的P點個數(shù)為( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.過直線y=x+1上的點P作圓C:(x-1)2+(y-6)2=2的兩條切線l1,l2,當直線l1,l2關(guān)于直線y=x+1對稱時,|PC|=( 。
A.3B.2$\sqrt{2}$C.1+$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知數(shù)列{an}滿足a1=2,且${a_n}=\frac{{2n{a_{n-1}}}}{{{a_{n-1}}+n-1}}(n≥2,n∈{N^*})$,則an=$\frac{n•{2}^{n}}{{2}^{n}-1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知集合M={1,2},N={2,3,4},若P=M∪N,則P的子集個數(shù)為( 。
A.14B.15C.16D.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖所示,已知底角為45°的等腰梯形ABCD,底邊BC長為7cm,腰長為2$\sqrt{2}$cm,當一條垂直于底邊BC(垂足為F)的直線l從B點開始由左至右移動(與梯形ABCD有公共點)時,直線l把梯形分成兩部分,令BF=x(0≤x≤7),左邊部分的面積為y,求y與x之間的函數(shù)關(guān)系式,畫出程序框圖,并寫出程序.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=ex(x-b)(b∈R).若存在$x∈[{\frac{1}{2},2}]$,使得f(x)+xf'(x)>0,則實數(shù)b的取值范圍是(-∞,$\frac{8}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知數(shù)列{an}的各項均為非負數(shù),其前n項和為Sn,且對任意的n∈N*,都有${a_{n+1}}≤\frac{{{a_n}+{a_{n+2}}}}{2}$.
(1)若a1=1,a505=2017,求a6的最大值;
(2)若對任意n∈N*,都有Sn≤1,求證:$0≤{a_n}-{a_{n+1}}≤\frac{2}{n(n+1)}$.

查看答案和解析>>

同步練習冊答案