分析 求出f′(x),分離參數(shù)b,根據(jù)函數(shù)的單調(diào)性求出b的范圍即可.
解答 解:∵f(x)=ex(x-b),
∴f′(x)=ex(x-b+1),
若存在x∈[$\frac{1}{2}$,2],使得f(x)+xf′(x)>0,
則若存在x∈[$\frac{1}{2}$,2],使得ex(x-b)+xex(x-b+1)>0,
即存在x∈[$\frac{1}{2}$,2],使得b<$\frac{{x}^{2}+2x}{x+1}$成立,
令g(x)=$\frac{{x}^{2}+2x}{x+1}$,x∈[$\frac{1}{2}$,2],
則g′(x)=$\frac{{x}^{2}+2x+2}{{(x+1)}^{2}}$>0,
g(x)在[$\frac{1}{2}$,2]遞增,
∴g(x)最大值=g(2)=$\frac{8}{3}$,
故b<$\frac{8}{3}$,
故答案為:(-∞,$\frac{8}{3}$).
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1$+\sqrt{2}$ | B. | 2$+\sqrt{2}$ | C. | 3$+\sqrt{2}$ | D. | 4$+\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | -i | D. | i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 16 | B. | 18 | C. | 24 | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | b<a<c | B. | c<a<b | C. | a<c<b | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $4\sqrt{5}$ | B. | $8\sqrt{5}$ | C. | $4\sqrt{15}$ | D. | $8\sqrt{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com