【題目】已知定義在R上的函數(shù)滿足, ,設(shè)與圖象的交點(diǎn)坐標(biāo)為,若,則的最小值為____.
【答案】2
【解析】
由已知可得f(x)和h(x)的圖象均關(guān)于(a,b)對(duì)稱,故每一組對(duì)稱點(diǎn)有橫坐標(biāo)和為2a,縱坐標(biāo)和為2b,進(jìn)而可得a+b=2,結(jié)合二次函數(shù)的圖象和性質(zhì),可得答案.
∵f(2a﹣x)=2b﹣f(x),可知f(x)的圖象關(guān)于(a,b)對(duì)稱,
又∵h(yuǎn)(x+a)==b+
設(shè)g(x)=,則g(﹣x)=﹣g(x),即g(x)為奇函數(shù),
∴y=h(x)的圖象關(guān)于(a,b)對(duì)稱,
∴對(duì)于每一組對(duì)稱點(diǎn)有橫坐標(biāo)和為2a,縱坐標(biāo)和為2b,
∴(xi+yi)=2am+2bm=4m,
∴a+b=2,
故a2+b2=a2+(2﹣a)2=2a2﹣4a+4=2(a﹣1)2+2≥2
當(dāng)且僅當(dāng)a=b=1時(shí),a2+b2取最小值2.
故答案為:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)國家提出的“大眾創(chuàng)業(yè),萬眾創(chuàng)新”的號(hào)召,小李同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè)。經(jīng)過市場調(diào)查,生產(chǎn)某小型電子產(chǎn)品需投入年固定成本為5萬元,每年生產(chǎn)萬件,需另投入流動(dòng)成本為萬元,且,每件產(chǎn)品售價(jià)為10元。經(jīng)市場分析,生產(chǎn)的產(chǎn)品當(dāng)年能全部售完。
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式;
(注:年利潤=年銷售收入-固定成本-流動(dòng)成本)
(2)年產(chǎn)量為多少萬件時(shí),小李在這一產(chǎn)品的生產(chǎn)中所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信運(yùn)動(dòng)”是一個(gè)類似計(jì)步數(shù)據(jù)庫的公眾賬號(hào).用戶只需以運(yùn)動(dòng)手環(huán)或手機(jī)協(xié)處理器的運(yùn)動(dòng)數(shù)據(jù)為介,然后關(guān)注該公眾號(hào),就能看見自己與好友每日行走的步數(shù),并在同一排行榜上得以體現(xiàn).現(xiàn)隨機(jī)選取朋友圈中的50人,記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
步數(shù)/步 | 10000以上 | ||||
男生人數(shù)/人 | 1 | 2 | 7 | 15 | 5 |
女性人數(shù)/人 | 0 | 3 | 7 | 9 | 1 |
規(guī)定:人一天行走的步數(shù)超過8000步時(shí)被系統(tǒng)評(píng)定為“積極性”,否則為“懈怠性”.
(1)填寫下面列聯(lián)表(單位:人),并根據(jù)列表判斷是否有90%的把握認(rèn)為“評(píng)定類型與性別有關(guān)”;
積極性 | 懈怠性 | 總計(jì) | |
男 | |||
女 | |||
總計(jì) |
附:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(2)為了進(jìn)一步了解“懈怠性”人群中每個(gè)人的生活習(xí)慣,從步行數(shù)在的人群中再隨機(jī)抽取3人,求選中的人中男性人數(shù)超過女性人數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓的右焦點(diǎn),點(diǎn)在上,且軸.
(1)求的方程;
(2)過的直線交于兩點(diǎn),交直線于點(diǎn).判定直線的斜率是否依次構(gòu)成等差數(shù)列?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右頂點(diǎn)分別為,,且以線段為直徑的圓與直線相切,橢圓截直線所得線段的長度為1.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)的動(dòng)直線與橢圓相交于,兩點(diǎn),若(為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn),直線:,圓:.
(1)求的取值范圍,并求出圓心坐標(biāo);
(2)若圓的半徑為1,過點(diǎn)作圓的切線,求切線的方程;
(3)有一動(dòng)圓的半徑為1,圓心在上,若動(dòng)圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若整數(shù)、既不互素,又不存在整除關(guān)系,則稱、為一個(gè)“聯(lián)盟”數(shù)對(duì).設(shè)為集的元子集,且中任兩數(shù)均為聯(lián)盟數(shù)對(duì).求的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在處的切線與直線平行,求實(shí)數(shù)的值;
(2)試討論函數(shù)在區(qū)間上的最大值;
(3)若時(shí),函數(shù)恰有兩個(gè)零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過A(5,3),B(4,4)兩點(diǎn),且圓心在x軸上.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若直線l過點(diǎn)(5,2),且被圓C所截得的弦長為6,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com