精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)
已知是矩形,平面,,的中點.

(1)求證:平面;
(2)求直線與平面所成的角.
(1)見解析;  (2)直線與平面所成的角為
本試題主要是考查了線面垂直的證明以及線面角的求解的綜合運用。
(1)要證平面,根據已知

,從而得到線線垂直,得線面垂直。
(2)與面所成的角。
,那么利用直角三角形可知直線與平面所成的角.
(1)



(2)與面所成的角。

直線與平面所成的角為
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,矩形ABCD中,AD⊥平面ABE,AE=EB=BC,F為CE上的點,且BF⊥平面ACE.

(1)求證:AE⊥平面BCE;
(2)求證:AE∥平面BFD.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知斜三棱柱ABC—A1B1C1的底面是正三角形,側面ABB1A1是邊長為2的菱形,且,M是AB的中點,

(1)求證:平面ABC;
(2)求點M到平面AA1C1C的距離.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)

如圖,在四棱錐EABCD中,底面ABCD為矩形,平面ABCD⊥平面ABE,∠AEB=90°,BEBC,FCE的中點,求證:
(1) AE∥平面BDF
(2) 平面BDF⊥平面BCE

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,在四棱錐中,底面是正方形,其他四個側面都是等邊三角形,的交點為,為側棱上一點.

(Ⅰ)當E為側棱SC的中點時,求證:SA∥平面BDE;
(Ⅱ)求證:平面BDE⊥平面SAC

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分14分)如圖,在四棱錐PABCD中,PA底面ABCD,DAB為直角,AB‖CD,AD=CD=2AB,E、F分別為PC、CD的中點.

(Ⅰ)試證:CD平面BEF;
(Ⅱ)設PAk·AB,且二面角E-BD-C的平面角大于,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
在如圖所示的幾何體中,四邊形為正方形,平面,


(Ⅰ)若點在線段上,且滿足,求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

表示不同的直線,表示不同的平面,給出下列四個命題:
①若,且;         
②若,且.則
③若,則∥m∥n;
④若且n∥,則∥m.
其中正確命題的個數是
A.1B.2 C.3D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

關于直線與平面有以下三個命題
⑴若
⑵若
⑶若,其中真命題有
A.1個B.2個C.3個D.0個

查看答案和解析>>

同步練習冊答案