已知函數(shù).
(Ⅰ)求的最小正周期和對稱中心;
(Ⅱ)若將的圖像向左平移個(gè)單位后所得到的圖像關(guān)于軸對稱,求實(shí)數(shù)的最小值.
(Ⅰ), ; (Ⅱ).
解析試題分析:(Ⅰ)這一問關(guān)鍵是利用倍角公式化簡表達(dá)式;(Ⅱ)先利用平移得到表達(dá)式,再根據(jù)圖像關(guān)于軸對稱得到,解出.
試題解析:(Ⅰ)
3分
由得,
所以最小正周期是,對稱中心為,. 6分
(Ⅱ)將的圖像向左平移個(gè)單位后得到, 8分
所以,.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/00/6/qu21i1.png" style="vertical-align:middle;" />,所以的最小值為. 12分
考點(diǎn):1.倍角公式;2.圖像平移;3.對稱中心;4.周期;5.對稱.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若存在,使f(x0)=1,求x0的值;
(2)設(shè)條件p:,條件q:,若p是q的充分條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,是半徑為2,圓心角為的扇形,是扇形的內(nèi)接矩形.
(Ⅰ)當(dāng)時(shí),求的長;
(Ⅱ)求矩形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直角坐標(biāo)系中,角的頂點(diǎn)是原點(diǎn),始邊與軸正半軸重合,終邊交單位圓于點(diǎn),且.將角的終邊按逆時(shí)針方向旋轉(zhuǎn),交單位圓于點(diǎn).記.
(Ⅰ)若,求;
(Ⅱ)分別過作軸的垂線,垂足依次為.記△ 的面積為,△的面積為.若,求角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(,,)的圖像與軸的交點(diǎn)為,它在軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為和
(1)求函數(shù)的解析式;
(2)若銳角滿足,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量m=(sinA,cosA),n=(,-1),m·n=1,且A為銳角.
(1)求角A的大小;
(2)求函數(shù)f(x)=cos2x+4cosAsinx(x∈R)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com