【題目】數(shù)列{an}滿足a1=2,an+1=an2+6an+6(n∈N×)
(1)設(shè)Cn=log5(an+3),求證{Cn}是等比數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)設(shè)bn= ﹣ ,數(shù)列{bn}的前n項和為Tn , 求證:﹣ ≤Tn<﹣ .
【答案】
(1)解:由an+1=an2+6an+6得an+1+3=(an+3)2,
∴ =2 ,即cn+1=2cn
∴{cn}是以2為公比的等比數(shù)列.
(2)解:又c1=log55=1,
∴cn=2n﹣1,即 =2n﹣1,
∴an+3=
故an= ﹣3
(3)解:∵bn= ﹣ = ﹣ ,∴Tn= ﹣ =﹣ ﹣ .
又0< = .
∴﹣ ≤Tn<﹣
【解析】(1)由已知可得,an+1+3=(an+3)2 , 利用構(gòu)造法令Cn=log5(an+3),則可得 ,從而可證數(shù)列{cn}為等比數(shù)列;(2)由(1)可先求數(shù)列cn , 代入cn=log5(an+3)可求an;(3)把(2)中的結(jié)果代入整理可得, ,則代入Tn=b1+b2+…+bn相消可證
【考點精析】關(guān)于本題考查的等比關(guān)系的確定和數(shù)列的前n項和,需要了解等比數(shù)列可以通過定義法、中項法、通項公式法、前n項和法進行判斷;數(shù)列{an}的前n項和sn與通項an的關(guān)系才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,G是AB延長線上的一點,GCD是圓O的割線,過點G作AG的垂線,交直線AC于點E,交直線 AD于點F,過點G作圓O的切線,切點為H.
(1)求證:C,D,E,F(xiàn)四點共圓;
(2)若GH=8,GE=4,求EF的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中點,那么( ﹣ ) =;若E是AB的中點,P是△ABC(包括邊界)內(nèi)任一點.則 的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin xcos x+cos2x+a;則f(x)的最小正周期為 , 若f(x)在區(qū)間[﹣ , ]上的最大值與最小值的和為 ,則實數(shù)a的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)列,設(shè)表示數(shù)列前項, , , 中的最大項.數(shù)列滿足: .
()若,求的前項和.
()設(shè)數(shù)列為等差數(shù)列,證明: 或者(為常數(shù)),, , , .
()設(shè)數(shù)列為等差數(shù)列,公差為,且.
記,
求證:數(shù)列是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn是數(shù)列{an}的前n項和,且a1=﹣1, =Sn , 求數(shù)列{an}的前n項和Sn= , 通項公式an= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形是正方形, , , , 都是等邊三角形, 、、、分別是線段、、、的中點,分別以、、、為折痕將四個等邊三角形折起,使得、、、四點重合于一點,得到一個四棱錐.對于下面四個結(jié)論:
①與為異面直線; ②直線與直線所成的角為
③平面; ④平面平面;
其中正確結(jié)論的個數(shù)有( )
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com