【題目】如圖,已知四邊形是正方形, , , , 都是等邊三角形, 、、、分別是線段、、、的中點,分別以、、、為折痕將四個等邊三角形折起,使得、、、四點重合于一點,得到一個四棱錐.對于下面四個結(jié)論:
①與為異面直線; ②直線與直線所成的角為
③平面; ④平面平面;
其中正確結(jié)論的個數(shù)有( )
A. 個 B. 個 C. 個 D. 個
【答案】D
【解析】①錯誤.所得四棱錐中,設(shè)中點為,則、兩點重合,∵,即,即與不是異面直線;②正確.∵, 與重合,且與所成角為,說明與所成角為;③正確.∵, 平面, 平面,∴平面,∴平面;④正確.∵平面, 平面, 點,∴平面平面,即平面平面,故選.
【 方法點睛】本題主要通過對多個命題真假的判斷,主要綜合考查線線成角、線面成角、線面平行以及面面平行的判斷,屬于難題.這種題型綜合性較強,也是高考的命題熱點,同學(xué)們往往因為某一處知識點掌握不好而導(dǎo)致“全盤皆輸”,因此做這類題目更要細(xì)心、多讀題,盡量挖掘出題目中的隱含條件,另外,要注意從簡單的自己已經(jīng)掌握的知識點入手,然后集中精力突破較難的命題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足a1=2,an+1=an2+6an+6(n∈N×)
(1)設(shè)Cn=log5(an+3),求證{Cn}是等比數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)設(shè)bn= ﹣ ,數(shù)列{bn}的前n項和為Tn , 求證:﹣ ≤Tn<﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心在直線3x+y﹣1=0上,且圓C在x軸、y軸上截得的弦長AB和MN分別為 和 .
(1)求圓C的方程;
(2)若圓心C位于第四象限,點P(x,y)是圓C內(nèi)一動點,且x,y滿足 ,求 的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,角A、B、C的對邊分別為a、b、c,已知a=2,A=45°,若三角形有兩解,則邊b的取值范圍是( )
A.b>2
B.b<2
C.2<b<2
D.2<b<2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,D是BC邊的中點,AE⊥AD,AE交CB的延長線于E,則下面結(jié)論中正確的是( )
A.△AED∽△ACB
B.△AEB∽△ACD
C.△BAE∽△ACE
D.△AEC∽△DAC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系 中,直線 的參數(shù)方程為 ( 為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,圓 的極坐標(biāo)方程為 .
(1)寫出圓 的直角坐標(biāo)方程;
(2) 為直線 上一動點,當(dāng) 到圓心 的距離最小時,求 的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是公差不為零的等差數(shù)列,滿足數(shù)列的通項公式為
(1)求數(shù)列的通項公式;
(2)將數(shù)列,中的公共項按從小到大的順序構(gòu)成數(shù)列,請直接寫出數(shù)列的通項公式;
(3)記,是否存在正整數(shù) ,使得成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com