4.已知a為實(shí)數(shù),f(x)=(x2-4)(x-a),
(1)求導(dǎo)數(shù)f'(x);
(2)若x=-1是函數(shù)f(x)的極值點(diǎn),求f(x)在[-2,2]上的最大值和最小值;
(3)若f(x)在(-∞,-2]和[2,+∞)上都是遞增的,求a的取值范圍.

分析 (1)根據(jù)導(dǎo)數(shù)的運(yùn)算法則求出函數(shù)的導(dǎo)數(shù)即可;
(2)求出a的值,解故導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值和最小值即可;
(3)根據(jù)二次函數(shù)的性質(zhì)得到關(guān)于a的不等式組,解出即可.

解答 解:(1)由原式得f(x)=x3-ax2-4x+4a,
∴f'(x)=3x2-2ax-4.
(2)由f'(-1)=0,得$a=\frac{1}{2}$,
所以$f(x)={x^3}-\frac{1}{2}{x^2}-4x+2$,
f'(x)=3x2-x-4.
由f'(x)=0,得$x=\frac{4}{3}$或x=-1.
又$f({\frac{4}{3}})=-\frac{50}{27}$,$f(-1)=\frac{9}{2}$,f(-2)=0,f(2)=0,
∴f(x)在[-2,2]上的最大值為$\frac{9}{2}$,最小值為$-\frac{50}{27}$.
(3)f'(x)=3x2-2ax-4的圖象為開(kāi)口向上且過(guò)點(diǎn)(0,-4)的拋物線(xiàn),
由條件得f'(-2)≥0,f'(2)≥0,
即$\left\{\begin{array}{l}4a+8≥0\\ 8-4a≥0.\end{array}\right.$∴-2≤a≤2,
∴a的取值范圍為[-2,2].

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及二次函數(shù)的性質(zhì),是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若直線(xiàn)y=kx+1與圓x2+y2+kx-y-9=0的兩個(gè)交點(diǎn)恰好關(guān)于y軸對(duì)稱(chēng),則k等于( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知A(-1,0),B是圓F:x2-2x+y2-11=0(F為圓心)上一動(dòng)點(diǎn),線(xiàn)段AB的垂直平分線(xiàn)交BF于P,則動(dòng)點(diǎn)P的軌跡方程為( 。
A.$\frac{x^2}{12}+\frac{y^2}{11}=1$B.$\frac{x^2}{36}-\frac{y^2}{35}=1$C.$\frac{x^2}{3}-\frac{y^2}{2}=1$D.$\frac{x^2}{3}+\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.一盒有10張獎(jiǎng)券,其中2張是有獎(jiǎng)的,先由甲后由乙各抽一張,求:
(1)甲中獎(jiǎng)的概率.
(2)甲、乙都中獎(jiǎng)的概率.
(3)甲、乙至少有一個(gè)中獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖,小黑圓表示網(wǎng)絡(luò)的結(jié)點(diǎn),結(jié)點(diǎn)之間的連線(xiàn)表示它們有網(wǎng)線(xiàn)相連.連線(xiàn)上標(biāo)注的數(shù)字表示該段網(wǎng)線(xiàn)單位時(shí)間內(nèi)可以通過(guò)的最大信息量.現(xiàn)從結(jié)點(diǎn)A向結(jié)點(diǎn)B傳遞信息,信息可以分開(kāi)沿不同的路線(xiàn)同時(shí)傳遞.則單位時(shí)間內(nèi)傳遞的最大信息量為( 。
A.26B.24C.20D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在直角坐標(biāo)系xOy中,曲線(xiàn)C:x2=4y與直線(xiàn)y=kx+a(a>0)交與M,N兩點(diǎn).
(1)當(dāng)k=0時(shí),分別求C在點(diǎn)M和N處的切線(xiàn)方程;
(2)y軸上是否存在點(diǎn)P,使得當(dāng)k變動(dòng)時(shí),總有∠OPM=∠OPN?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.要排出某班一天中語(yǔ)文、數(shù)學(xué)、政治、英語(yǔ)、體育、藝術(shù)六堂課的課程表,要求數(shù)學(xué)排在上午(前4節(jié)),體育排在下午(后2節(jié)),不同排法總數(shù)是(  )
A.720B.120C.144D.192

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.(Ⅰ)已知在△ABC中,AB=1,BC=2,∠B=$\frac{π}{3}$,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$求(2$\overrightarrow{a}$-3$\overrightarrow$)•(4$\overrightarrow{a}$+$\overrightarrow$);
(Ⅱ)已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-1,3),且向量t$\overrightarrow{a}$+$\overrightarrow$與向量$\overrightarrow{a}$-$\overrightarrow$平行,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,點(diǎn)$A(1,\sqrt{3})$為橢圓$\frac{x^2}{2}+\frac{y^2}{n}=1$上一定點(diǎn),過(guò)點(diǎn)A引兩直線(xiàn)與橢圓分別交于B,C兩點(diǎn).
(1)求橢圓方程;
(2)若直線(xiàn)AB,AC與x軸圍成以點(diǎn)A為頂點(diǎn)的等腰三角形,求△ABC的面積最大值,并求出此時(shí)直線(xiàn)BC的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案