已知函數(shù)f(x)=|log2|x||的定義域?yàn)閇a,b],值域?yàn)閇0,2],則a+b的取值范圍是________.

{-5,-,5}
分析:函數(shù)f(x)=|log2|x||的定義域?yàn)閇a,b],值域?yàn)閇0,2],若1≤|a|<|b|,則log2|a|=0,|a|=1,log2|b|=2,|b|=4;若1≤|b|<|a|,則log2|b|=0,|b|=1,log2|a|=2,|a|=4;若|a|<|b|,log2|a|=0,|a|=1,log2|b|=-2,|b|=.由此能夠求出a+b的取值范圍.
解答:∵函數(shù)f(x)=|log2|x||的定義域?yàn)閇a,b],值域?yàn)閇0,2],
當(dāng)1≤|a|<|b|時(shí),
則log2|a|=0,|a|=1,
log2|b|=2,|b|=4,
∵0<a<b,
∴a=1,b=4,a+b=5,
當(dāng)1≤|b|<|a|時(shí),
則log2|b|=0,|b|=1,
log2|a|=2,|a|=4,
∵a<b<0,
∴a=-4,b=-1,a+b=-5.
當(dāng)|a|<|b|時(shí),
log2|a|=0,|a|=1,
log2|b|=-2,|b|=,
∵a<b<0,
∴a=-1,b=-,a+b=-
所以,a+b的取值范圍是:{-5,-,5}.
故答案為:{-5,-,5}.
點(diǎn)評(píng):本題考查對(duì)數(shù)的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,易錯(cuò)點(diǎn)是考慮問(wèn)題不夠全面,導(dǎo)致丟解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對(duì)稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案