已知函數(shù)f(x)在R上是奇函數(shù),且f(-1)=f(0)=f(1)=0,若f(x)在(-∞,0)上是減函數(shù),又f(a)>f(a+1),求a的取值范圍.
考點:奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得,函數(shù)f(x)在(0,+∞)上也是減函數(shù),可得a<a+1<0,或0<a<a+1,解得即可.
解答: 解:由題意可得,函數(shù)f(x)在(0,+∞)上也是減函數(shù),
∵f(-1)=f(0)=f(1)=0,再根據(jù)f(a)>f(a+1),
∴a<a+1<0,或0<a<a+1,
∴a<-1或a>0,
∴a的取值范圍是(-∞,-1)∪(0,+∞).
點評:本題主要考查奇函數(shù)的性質(zhì),函數(shù)的單調(diào)性的應(yīng)用,一元二次不等式的解法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B為兩個集合,若命題p:?x∈A,都有2x∈B,則( 。
A、¬p:?x∈A,使得2x∈B
B、¬p:?x∉A,使得2x∈B
C、¬p:?x∈A,使得2x∉B
D、¬p:?x∉A,2x∉B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα是方程5x2-7x-6=0的根,且α是第三象限角,則
sin(-α-
2
)cos(
2
-α)tan2(π-α)
cos(
π
2
-α)sin(
π
2
+α)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={5,2a},集合B={a,b},若A∩B={2},則a+b等于( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)xoy中,已知A(1,1),B(3,3),試在x軸的正半軸上求一點P,使∠APB最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的通項an=n(cos2
2
-sin2
2
),其前n項和為Sn,則S2010
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a=50.2,b=0.50.2,c=0.52,則a,b,c的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在同一直角坐標(biāo)系中,函數(shù)y=mx+m和函數(shù)y=-mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy中,直線I的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
  (t為參數(shù)),若以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=
2
cos(θ+
π
4
).
(1)求直線I被曲線C所截得的弦長;
(2)若M(x,y)是曲線C上的動點,求x+y的最大值.

查看答案和解析>>

同步練習(xí)冊答案