在同一直角坐標(biāo)系中,函數(shù)y=mx+m和函數(shù)y=-mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是(  )
A、
B、
C、
D、
考點(diǎn):二次函數(shù)的圖象,一次函數(shù)的性質(zhì)與圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:本題主要考查一次函數(shù)和二次函數(shù)的圖象所經(jīng)過(guò)的象限的問(wèn)題,關(guān)鍵是m的正負(fù)的確定,對(duì)于二次函數(shù)y=ax2+bx+c,當(dāng)a>0時(shí),開口向上;當(dāng)a<0時(shí),開口向下.對(duì)稱軸為x=
1
m
,與y軸的交點(diǎn)坐標(biāo)為(0,c).
解答: 解:逐項(xiàng)分析
A、由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=-mx2+2x+2開口方向朝上,與圖象不符,故A選項(xiàng)錯(cuò)誤;
B、由函數(shù)y=mx+m的圖象可知m<0,對(duì)稱軸為x=
1
m
<0,則對(duì)稱軸應(yīng)在y軸左側(cè),與圖象不符,故B選項(xiàng)錯(cuò)誤;
C、由函數(shù)y=mx+m的圖象可知m>0,即函數(shù)y=-mx2+2x+2開口方向朝下,與圖象不符,故C選項(xiàng)錯(cuò)誤;
D、由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=-mx2+2x+2開口方向朝上,對(duì)稱軸為x=
1
m
<0,則對(duì)稱軸應(yīng)在y軸左側(cè),與圖象相符,故D選項(xiàng)正確;
故選D.
點(diǎn)評(píng):本題主要考查了一次函數(shù)和二次函數(shù)的圖象性質(zhì)以及分析能力和讀圖能力,要掌握它們的性質(zhì)才能靈活解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各組函數(shù)中,不表示同一函數(shù)的序號(hào)是
 

①f(x)=1,g(x)=x0;
②f(x)=x+2,g(x)=
x2-4
x-2
;
③f(x)=|x|;g(x)=
x    x≥0
-x  x<0
;
④f(x)=x,g(x)=(
x
)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)在R上是奇函數(shù),且f(-1)=f(0)=f(1)=0,若f(x)在(-∞,0)上是減函數(shù),又f(a)>f(a+1),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1
x
-1

(1)求函數(shù)f(x)的定義域;
(2)判斷并用定義證明函數(shù)f(x)的單調(diào)性;
(3)求函數(shù)f(x)的反函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如下表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.下列關(guān)于f(x)的命題:
x-1045
f(x)1221
①函數(shù)f(x)的極大值點(diǎn)為0,4;
②函數(shù)f(x)在[0,2]上是減函數(shù);
③如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a有4個(gè)零點(diǎn).
其中正確命題的個(gè)數(shù)有
 
 個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=mx2-3x+1的圖象上其零點(diǎn)至少有一個(gè)在原點(diǎn)右側(cè),則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)對(duì)數(shù)函數(shù)y=f(x)的圖象過(guò)點(diǎn)(9,2);
(1)求f(x)的解析式
(2)若x>0且滿足f(x)>1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log2(x2-5x+4)的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,焦距為2
3

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)不過(guò)原點(diǎn)O的直線l與橢圓C交于兩點(diǎn)M、N,且直線OM、MN、ON的斜率依次滿足kMN2=kOM•kON,求△OMN面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案