【題目】已知橢圓過(guò)圓的圓心,且右焦點(diǎn)與拋物線的焦點(diǎn)重合.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作直線交橢圓,兩點(diǎn),若,求直線的方程.

【答案】(1)

(2)

【解析】

(1)根據(jù)焦點(diǎn)與橢圓上的點(diǎn),列方程求解即可.

(2)根據(jù)三角形的面積公式化簡(jiǎn)可得,再利用向量的方法可得,再分直線有無(wú)斜率的情況,聯(lián)立直線與橢圓的方程,利用韋達(dá)定理代入化簡(jiǎn)向量的關(guān)系求得斜率即可.

解:(1)因?yàn)閽佄锞的焦點(diǎn)為,所以,

因?yàn)?/span>在橢圓上,所以,由,得,所以橢圓的方程為

(2)由得:,即,可得,

①當(dāng)垂直軸時(shí),,此時(shí)滿足題意,所以此時(shí)直線的方程為;

②當(dāng)不垂直軸時(shí),設(shè),直線的方程為,

消去,

所以,

代入可得:,

代入,得,

代入化簡(jiǎn)得:,

解得,

經(jīng)檢驗(yàn)滿足題意,則直線的方程為

綜上所述直線的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)多年的運(yùn)作,雙十一搶購(gòu)活動(dòng)已經(jīng)演變成為整個(gè)電商行業(yè)的大型集體促銷盛宴.為迎接2014雙十一網(wǎng)購(gòu)狂歡節(jié),某廠家擬投入適當(dāng)?shù)膹V告費(fèi),對(duì)網(wǎng)上所售產(chǎn)品進(jìn)行促銷.經(jīng)調(diào)查測(cè)算,該促銷產(chǎn)品在雙十一的銷售量p萬(wàn)件與促銷費(fèi)用x萬(wàn)元滿足(其中,a為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬(wàn)元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為

元/件,假定廠家的生產(chǎn)能力完全能滿足市場(chǎng)的銷售需求.

(1)將該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為促銷費(fèi)用x萬(wàn)元的函數(shù);

(2)促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)若動(dòng)點(diǎn)到定點(diǎn)的距離與到定直線的距離之比為,求證:動(dòng)點(diǎn)的軌跡是橢圓;

2)設(shè)(1)中的橢圓短軸的上頂點(diǎn)為,試找出一個(gè)以點(diǎn)為直角頂點(diǎn)的等腰直角三角形,并使得兩點(diǎn)也在橢圓上,并求出的面積;

3)對(duì)于橢圓(常數(shù)),設(shè)橢圓短軸的上頂點(diǎn)為,試問(wèn):以點(diǎn)為直角頂點(diǎn),且、兩點(diǎn)也在橢圓上的等腰直角三角形有幾個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家電公司銷售部門共有200位銷售員,每位部門對(duì)每位銷售員都有1400萬(wàn)元的年度銷售任務(wù),已知這200位銷售員去年完成銷售額都在區(qū)間(單位:百萬(wàn)元)內(nèi),現(xiàn)將其分成5組,第1組,第2組,第3組,第4組,第5組對(duì)應(yīng)的區(qū)間分別為, , , , ,繪制出頻率分布直方圖.

(1)求的值,并計(jì)算完成年度任務(wù)的人數(shù);

(2)用分層抽樣從這200位銷售員中抽取容量為25的樣本,求這5組分別應(yīng)抽取的人數(shù);

(3)現(xiàn)從(2)中完成年度任務(wù)的銷售員中隨機(jī)選取2位,獎(jiǎng)勵(lì)海南三亞三日游,求獲得此獎(jiǎng)勵(lì)的2位銷售員在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了更好地支持中小型企業(yè)的發(fā)展,某市決定對(duì)部分企業(yè)的稅收進(jìn)行適當(dāng)?shù)臏p免,某機(jī)構(gòu)調(diào)查了當(dāng)?shù)氐闹行⌒推髽I(yè)年收入情況,并根據(jù)所得數(shù)據(jù)畫出了樣本的頻率分布直方圖,下面三個(gè)結(jié)論:

樣本數(shù)據(jù)落在區(qū)間的頻率為0.45;

如果規(guī)定年收入在500萬(wàn)元以內(nèi)的企業(yè)才能享受減免稅政策,估計(jì)有55%的當(dāng)?shù)刂行⌒推髽I(yè)能享受到減免稅政策;

樣本的中位數(shù)為480萬(wàn)元.

其中正確結(jié)論的個(gè)數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C1y=cos xC2y=sin (2x+),則下面結(jié)論正確的是( )

A. C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2

B. C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2

C. C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2

D. C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓,定義橢圓C相關(guān)圓E:.若拋物線的焦點(diǎn)與橢圓C的右焦點(diǎn)重合,且橢圓C的短軸長(zhǎng)與焦距相等.

1)求橢圓C及其相關(guān)圓E的方程;

2)過(guò)相關(guān)圓E上任意一點(diǎn)P作其切線l,若l 與橢圓交于A,B兩點(diǎn),求證:為定值(為坐標(biāo)原點(diǎn));

3)在(2)的條件下,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)試判斷函數(shù)的單調(diào)性;

2)是否存在實(shí)數(shù),使函數(shù)的極值大于?若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(數(shù)學(xué)文卷·2017屆重慶十一中高三12月月考第16題) 現(xiàn)介紹祖暅原理求球體體積公式的做法:可構(gòu)造一個(gè)底面半徑和高都與球半徑相等的圓柱,然后在圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐,用這樣一個(gè)幾何體與半球應(yīng)用祖暅原理(圖1),即可求得球的體積公式.請(qǐng)研究和理解球的體積公式求法的基礎(chǔ)上,解答以下問(wèn)題:已知橢圓的標(biāo)準(zhǔn)方程為 ,將此橢圓繞y軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(圖2),其體積等于______

查看答案和解析>>

同步練習(xí)冊(cè)答案