20.設(shè)m,n是不同的直線,α,β是不同的平面,下列四個命題為真命題的是( 。
①若m⊥α,n⊥m,則n∥α;       
②若α∥β,n⊥α,m∥β,則n⊥m;
③若m∥α,n⊥β,m⊥n,則α⊥β;
④若m∥α,n⊥β,m∥n,則α⊥β.
A.②③B.③④C.②④D.①④

分析 ①,若m⊥α,n⊥m,則n∥α或n?α;       
②,若α∥β,n⊥α⇒n⊥β,又∵m∥β,則n⊥m;
③,若m∥α,n⊥β,m⊥n,則α、β不一定垂直;
④,若n⊥β,m∥n⇒m⊥β,又∵m∥α,則α⊥β.

解答 解:對于①,若m⊥α,n⊥m,則n∥α或n?α,故錯;       
對于②,若α∥β,n⊥α⇒n⊥β,又∵m∥β,則n⊥m,故正確;
對于③,若m∥α,n⊥β,m⊥n,則α、β不一定垂直,故錯;
對于④,若n⊥β,m∥n⇒m⊥β,又∵m∥α,則α⊥β,故正確.
故選:C

點評 本題考查了空間線線、線面、面面的位置關(guān)系,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.若拋物線y2=2mx的準線方程為x=-3,則實數(shù)m的值為( 。
A.-6B.-$\frac{1}{6}$C.$\frac{1}{6}$D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知sin(α-$\frac{π}{6}$)=$\frac{1}{3}$,則sin(2α+$\frac{π}{6}$)的值為$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.偶函數(shù)f(x)滿足f(x-1)=f(x+1),且當x∈[-1,0]時,f(x)=-x,則函數(shù)g(x)=f(x)-lgx在x∈(0,10)上的零點個數(shù)是(  )
A.10B.9C.8D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.空間幾何體ABCDEF如圖所示.已知面ABCD⊥面ADEF,ABCD為梯形,ADEF為正方形,且AB∥CD,AB⊥AD,CD=4,AB=AD=2,G為CE的中點.
(Ⅰ)求證:BG∥面ADEF;
(Ⅱ)求證:CB⊥面BDE;
(Ⅲ)求三棱錐E-BDG的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.不等式|2x-1|+|2x+9|>10的解集為$\{x|x<-\frac{9}{2}或x>\frac{1}{2}\}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知集合A={-2,-1,0,1,2},B={x|0≤x≤1},那么A∩B等于( 。
A.{0}B.{1}C.{0,1}D.[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.如果實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-y+1≥0}\\{y+1≥0}\\{x+y+1≤0}\end{array}\right.$,那么2x-y的最大值為(  )
A.2B.1C.-2D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)f(x)=sinxcosx-$\sqrt{3}$cos2x的圖象可由函數(shù)g(x)=sin(2x+$\frac{π}{3}$)-$\frac{{\sqrt{3}}}{2}$的圖象向右平移k(k>0)個單位得到,則k的最小值為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

同步練習冊答案