【題目】如圖,橢圓的離心率為, 軸被曲線截得的線段長等于的長半軸長。

1)求, 的方程;

2)設軸的交點為M,過坐標原點O的直線相交于點A,B,直線MA,MB分別與相交與D,E.

證明:

MAB,MDE的面積分別是.問:是否存在直線,使得=?請說明理由。

【答案】1

2見解析 滿足條件的直線存在,且有兩條,其方程分別為

【解析】1)由題意知,從而,又,解得

, 的方程分別為。

2由題意知,直線的斜率存在,設為,則直線的方程為.

,

,則是上述方程的兩個實根,于是。

又點的坐標為,所以

,即。

設直線的斜率為,則直線的方程為,由解得,則點的坐標為

又直線的斜率為,同理可得點B的坐標為.

于是

,

解得,則點的坐標為

又直線的斜率為,同理可得點的坐標

于是

因此

由題意知, 解得。

又由點的坐標可知, ,所以

故滿足條件的直線存在,且有兩條,其方程分別為。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定點,定直線,動點到點的距離比點的距離小1.

(1)求動點P的軌跡C的方程;

(2)過點的直線與(1)中軌跡C相交于兩個不同的點M、N,若,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1、F2分別為雙曲線的左、右焦點,若雙曲線左支上存在一點P,使得=8a,則雙曲線的離心率的取值范圍是__________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心坐標,直線被圓截得弦長為.

1)求圓的方程;

2)從圓外一點向圓引切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體 中, 分別為 的中點,點 是底面內一點,且 平面 ,則 的最大值是( )

A. B. 2 C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)程為為參數(shù)),設直線的交點為,當變化時點的軌跡為曲線.

(1)求出曲線的普通方程;

(2)以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,點為曲線的動點,求點到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱臺中, , 分別是 的中點, , 平面,且.

1)證明: 平面;

2)若 為等邊三角形,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年是某市大力推進居民生活垃圾分類的關鍵一年,有關部門為宣傳垃圾分類知識,面向該市市民進行了一次“垃圾分類知識”的網(wǎng)絡問卷調查,每位市民僅有一次參與機會,通過抽樣,得到參與問卷調查中的1000人的得分數(shù)據(jù),其頻率分布直方圖如圖所示:

(Ⅰ)估計該組數(shù)據(jù)的中位數(shù)、眾數(shù);

(Ⅱ)由頻率分布直方圖可以認為,此次問卷調查的得分Z服從正態(tài)分布N(μ,210),μ近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),利用該正態(tài)分布,求P(50.5<Z<94);

(Ⅲ)在(Ⅱ)的條件下,有關部門為此次參加問卷調査的市民制定如下獎勵方案:

(i)得分不低于μ可獲贈2次隨機話費,得分低于μ則只有1次;

(ii)每次贈送的隨機話費和對應概率如下:

贈送話費(單元:元)

10

20

概率

現(xiàn)有一位市民要參加此次問卷調查,記X(單位元)為該市民參加.問卷調查獲贈的話費,求X的分布列和數(shù)學期望.

,

若ZN(μ,σ2),則P(μ-σ<Z<μ+σ)= 0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知兩點, ,動點滿足,線段的中垂線交線段.

(1)求點的軌跡的方程;

(2)過點的直線與軌跡相交于兩點,設點,直線的斜率分別為,是否為定值?并證明你的結論.

查看答案和解析>>

同步練習冊答案