14.在各項均為正數(shù)的等比數(shù)列{an}中,a1=2,且a2,a4+2,a5成等差數(shù)列,記Sn是數(shù)列{an}的前n項和,則S5=62.

分析 a2,a4+2,a5成等差數(shù)列,可得a2+a5=2(a4+2),把已知代入解得q.再利用求和公式即可得出.

解答 解:設(shè)正數(shù)的等比數(shù)列{an}的公比為q>0,∵a2,a4+2,a5成等差數(shù)列,
∴a2+a5=2(a4+2),∴2q+2q4=2(2q3+2),解得q=2.
∵S5=$\frac{2({2}^{5}-1)}{2-1}$=62.
故答案為:62.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其求和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知等比數(shù)列{an}中,a2=$\frac{1}{9}$,a1+6a2=1.
(Ⅰ) 求{an}的前n項和Sn;
(Ⅱ)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知圓心為C 的圓經(jīng)過點A(-3,2)和點B(1,0),且圓心C在直線y=x+1上.
(1)求圓C的標準方程.
(2)已知線段MN的端點M的坐標(3,4),另一端點N在圓C上運動,求線段MN 的中點G的軌跡方程;
(3)若直線x-y+m=0與圓C交于A B兩點,當OA⊥OB 時(其中O為坐標原點),求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=$\overrightarrow a$•$\overrightarrow b$,其中$\overrightarrow a$=(2cosx,$\sqrt{3}$sin2x),$\overrightarrow b$=(cosx,1),x∈R.
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,f(A)=2,a=$\sqrt{7}$,且sinB=2sinC,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若直線ax+by+1=0(a、b>1)過圓x2+y2+8x+2y+1=0的圓心,則$\frac{1}{a}$+$\frac{4}$的最小值為16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.葫蘆島市有4個重要旅游景點:a是葫蘆山莊,b是興城古城,c是菊花島,d是九門口,現(xiàn)有A,B,C,D四位游客來葫游玩.
(1)假定他們每人只游覽一個景點,且游覽每個景點都是隨機的.求四人游覽同一景點的概率;
(2)假定原計劃A只游覽a,B只游覽b,C只游覽c,D只游覽d.
①在(1)之下,求這四人恰有兩人完成原計劃的概率;
②若每人只游覽一個景點,每個景點只能一人游覽,
求這四人至少有一人完成原計劃的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=x-ln|x|,則f(x)的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知復數(shù)滿足(1+$\sqrt{3}$i)z=$\sqrt{3}$i,則z=( 。
A.$\frac{3}{2}$+$\frac{\sqrt{3}}{2}$iB.$\frac{3}{2}$-$\frac{\sqrt{3}}{2}$iC.$\frac{3}{4}$+$\frac{\sqrt{3}}{4}$iD.$\frac{3}{4}$-$\frac{\sqrt{3}}{4}$i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)f(x)=x2-2x+3的值域是[2,+∞).

查看答案和解析>>

同步練習冊答案