【題目】在十九大“建設(shè)美麗中國(guó)”的號(hào)召下,某省級(jí)生態(tài)農(nóng)業(yè)示范縣大力實(shí)施綠色生產(chǎn)方案,對(duì)某種農(nóng)產(chǎn)品的生產(chǎn)方式分別進(jìn)行了甲、乙兩種方案的改良。為了檢查甲、乙兩種方案的改良效果,隨機(jī)在這兩種方案中各任意抽取了件產(chǎn)品作為樣本逐件稱(chēng)出它們的重量(單位:克),重量值落在之間的產(chǎn)品為合格品,否則為不合格品。下表是甲、乙兩種方案樣本頻數(shù)分布表。
產(chǎn)品重量 | 甲方案頻數(shù) | 乙方案頻數(shù) |
(1)求出甲(同組中的重量值用組中點(diǎn)值代替)方案樣本中件產(chǎn)品的平均數(shù);
(2)若以頻率作為概率,試估計(jì)從兩種方案分別任取件產(chǎn)品,恰好兩件產(chǎn)品都是合格品的概率分別是多少;
(3)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并回答有多大把握認(rèn)為“產(chǎn)品是否為合格品與改良方案的選擇有關(guān)”.
甲方案 | 乙方案 | 合計(jì) | |
合格品 | |||
不合格品 | |||
合計(jì) |
參考公式: ,其中.
臨界值表:
【答案】(1) .
(2) .
(3)列聯(lián)表見(jiàn)解析; 有的把握認(rèn)為“產(chǎn)品質(zhì)量與改良方案的選擇有關(guān)”.
【解析】分析:(1)由頻率分布表求出甲方案樣本中40件產(chǎn)品的平均數(shù)和中位數(shù);
(2)列出列聯(lián)表,計(jì)算,根據(jù)臨界值表格,作出判斷.
詳解:
(1)
甲的中位數(shù)為
(2)設(shè)從甲方案任取1件產(chǎn)品為合格品為事件A,則
設(shè)從乙方案任取1件產(chǎn)品為合格品為事件B,則
所以兩件產(chǎn)品恰好都是合格品的概率為
(3)列聯(lián)表
甲方案 | 乙方案 | 合計(jì) | |
合格品 | 30 | 36 | 66 |
不合格品 | 10 | 4 | 14 |
合計(jì) | 40 | 40 | 80 |
因?yàn)?/span>
故有90%的把握認(rèn)為“產(chǎn)品質(zhì)量與改良方案的選擇有關(guān)”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平行四邊形ABCD的三個(gè)頂點(diǎn)的坐標(biāo)為
(1)求平行四邊形ABCD的頂點(diǎn)D的坐標(biāo);
(2)求四邊形ABCD的面積
(3)求的平分線所在直線方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在育民中學(xué)舉行的電腦知識(shí)競(jìng)賽中,將九年級(jí)兩個(gè)班參賽的學(xué)生成績(jī)(得分均為整數(shù))進(jìn)行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知圖中從左到右的第一、第三、第四、第五小組的頻率分別是0.30,0.15,0.10,0.05,第二小組的頻數(shù)是40.
(1)求第二小組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)求這兩個(gè)班參賽的學(xué)生人數(shù)是多少?
(3)求這兩個(gè)班參賽學(xué)生的成績(jī)的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),在一個(gè)周期內(nèi)的圖像如圖所示.
(I)求函數(shù)的解析式;
(II)設(shè),且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍以及這兩個(gè)根的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
f(x)=(cosx﹣x)(π+2x)﹣ (sinx+1)
g(x)=3(x﹣π)cosx﹣4(1+sinx)ln(3﹣ )
證明:
(1)存在唯一x0∈(0, ),使f(x0)=0;
(2)存在唯一x1∈( ,π),使g(x1)=0,且對(duì)(Ⅰ)中的x0 , 有x0+x1<π.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)用五點(diǎn)作圖法畫(huà)出在長(zhǎng)度為一個(gè)周期的區(qū)間上的圖象;
(2))求函數(shù)的單調(diào)遞增區(qū)間;
(3)簡(jiǎn)述如何由的圖象經(jīng)過(guò)適當(dāng)?shù)膱D象變換得到的圖象?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),函數(shù)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的值;
(2)當(dāng)時(shí),
① 若對(duì)于任意,恒有,求的取值范圍;
② 若,求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】交通指數(shù)是指交通擁堵指數(shù)的簡(jiǎn)稱(chēng),是綜合反映道路網(wǎng)暢通或擁堵的概念性指數(shù)值,記交通指數(shù)為,其范圍為,分別有五個(gè)級(jí)別:,暢通;,基本暢通;,輕度擁堵;,中度擁堵;,嚴(yán)重?fù)矶?在晚高峰時(shí)段(),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖所示.
(1)求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范蔚膫(gè)數(shù);
(2)用分層抽樣的方法從輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范沃泄渤槿?個(gè)路段,求依次抽取的三個(gè)級(jí)別路段的個(gè)數(shù);
(3)從(2)中抽取的6個(gè)路段中任取2個(gè),求至少有1個(gè)路段為輕度擁堵的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com