【題目】已知函數(shù)
f(x)=(cosx﹣x)(π+2x)﹣ (sinx+1)
g(x)=3(x﹣π)cosx﹣4(1+sinx)ln(3﹣
證明:
(1)存在唯一x0∈(0, ),使f(x0)=0;
(2)存在唯一x1∈( ,π),使g(x1)=0,且對(duì)(Ⅰ)中的x0 , 有x0+x1<π.

【答案】
(1)證明:∵當(dāng)x∈(0, )時(shí),f′(x)=﹣(1+sinx)(π+2x)﹣2x﹣ cosx<0,

∴函數(shù)f(x)在(0, )上為減函數(shù),

又f(0)=π﹣ >0,f( )=﹣π2 <0;

∴存在唯一的x0∈(0, ),使f(x0)=0;


(2)證明:考慮函數(shù)h(x)= ﹣4ln(3﹣ x),x∈[ ,π],

令t=π﹣x,則x∈[ ,π]時(shí),t∈[0, ],

記函數(shù)u(t)=h(π﹣t)= ﹣4ln(1+ t),

則u′(t)=

=

=

=

= ,

由(Ⅰ)得,當(dāng)t∈(0,x0)時(shí),u′(t)>0;

在(0,x0)上u(x)是增函數(shù),又u(0)=0,∴當(dāng)t∈(0,x0]時(shí),u(t)>0,

∴u(t)在(0,x0]上無(wú)零點(diǎn);

在(x0, )上u(t)是減函數(shù),且u(x0)>0,u( )=﹣4ln2<0,

∴存在唯一的t1∈(x0 ),使u(t1)=0;

∴存在唯一的t1∈(0, ),使u(t1)=0;

∴存在唯一的x1=π﹣t1∈( ,π),使h(x1)=h(π﹣t1)=u(t1)=0;

∵當(dāng)x∈( ,π)時(shí),1+sinx>0,∴g(x)=(1+sinx)h(x)與h(x)有相同的零點(diǎn),

∴存在唯一的x1∈( ,π),使g(x1)=0,

∵x1=π﹣t1,t1>x0,∴x0+x1<π.


【解析】(1)根據(jù)x∈(0, )時(shí),f′(x)<0,得出f(x)是單調(diào)減函數(shù),
再根據(jù)f(0)>0,f( )<0,得出此結(jié)論;(2)構(gòu)造函數(shù)h(x)= ﹣4ln(3﹣ x),x∈[ ,π],令t=π﹣x,得u(t)=h(π﹣t),求出u(t)存在唯一零點(diǎn)t1∈(0, ),即證g(x)存在唯一的零點(diǎn)x1∈( ,π),滿足x0+x1<π.
【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】,,這五個(gè)數(shù)字中任取個(gè)組成無(wú)重復(fù)數(shù)字的三位數(shù),當(dāng)三個(gè)數(shù)字中有時(shí),需排在的前面(不一定相鄰),這樣的三位數(shù)有( )個(gè).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于給定的大于1的正整數(shù)n,設(shè),其中,且記滿足條件的所有x的和為

(1)求(2)設(shè),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某產(chǎn)品的廣告支出x(單位:萬(wàn)元)與銷(xiāo)售收入y(單位:萬(wàn)元)之間有下表所對(duì)應(yīng)的數(shù)據(jù):

廣告支出x(單位:萬(wàn)元)

1

2

3

4

銷(xiāo)售收入y(單位:萬(wàn)元)

12

28

42

56

(1)畫(huà)出表中數(shù)據(jù)的散點(diǎn)圖;

(2)求出y對(duì)x的回歸直線方程;

(3)若廣告費(fèi)為9萬(wàn)元,則銷(xiāo)售收入約為多少萬(wàn)元?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年2月9-25日,第23屆冬奧會(huì)在韓國(guó)平昌舉行.4年后,第24 屆冬奧會(huì)將在中國(guó)北京和張家口舉行.為了宣傳冬奧會(huì),某大學(xué)在平昌冬奧會(huì)開(kāi)幕后的第二天,從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對(duì)是否收看平昌冬奧會(huì)開(kāi)幕式情況進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:

(1)根據(jù)上表說(shuō)明,能否有的把握認(rèn)為,收看開(kāi)幕式與性別有關(guān)?

(2)現(xiàn)從參與問(wèn)卷調(diào)查且收看了開(kāi)幕式的學(xué)生中,采用按性別分層抽樣的方法,選取12人參加2022年北京冬奧會(huì)志愿者宣傳活動(dòng).若從這12人中隨機(jī)選取3人到校廣播站開(kāi)展冬奧會(huì)及冰雪項(xiàng)目的宣傳介紹,設(shè)選取的3 人中女生人數(shù)為,寫(xiě)出的分布列,并求.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在十九大“建設(shè)美麗中國(guó)”的號(hào)召下,某省級(jí)生態(tài)農(nóng)業(yè)示范縣大力實(shí)施綠色生產(chǎn)方案,對(duì)某種農(nóng)產(chǎn)品的生產(chǎn)方式分別進(jìn)行了甲、乙兩種方案的改良。為了檢查甲、乙兩種方案的改良效果,隨機(jī)在這兩種方案中各任意抽取了件產(chǎn)品作為樣本逐件稱(chēng)出它們的重量(單位:克),重量值落在之間的產(chǎn)品為合格品,否則為不合格品。下表是甲、乙兩種方案樣本頻數(shù)分布表。

產(chǎn)品重量

甲方案頻數(shù)

乙方案頻數(shù)

(1)求出甲(同組中的重量值用組中點(diǎn)值代替)方案樣本中件產(chǎn)品的平均數(shù);

(2)若以頻率作為概率,試估計(jì)從兩種方案分別任取件產(chǎn)品,恰好兩件產(chǎn)品都是合格品的概率分別是多少;

(3)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并回答有多大把握認(rèn)為“產(chǎn)品是否為合格品與改良方案的選擇有關(guān)”.

甲方案

乙方案

合計(jì)

合格品

不合格品

合計(jì)

參考公式: ,其中.

臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=2|x﹣1|+x﹣1,g(x)=16x2﹣8x+1.記f(x)≤1的解集為M,g(x)≤4的解集為N.
(1)求M;
(2)當(dāng)x∈M∩N時(shí),證明:x2f(x)+x[f(x)]2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x2+bx+b) (b∈R)
(1)當(dāng)b=4時(shí),求f(x)的極值;
(2)若f(x)在區(qū)間(0, )上單調(diào)遞增,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班名同學(xué)的數(shù)學(xué)小測(cè)成績(jī)的頻率分布表如圖所示,其中,且分?jǐn)?shù)在的有人.

(1)求的值;

(2)若分?jǐn)?shù)在的人數(shù)是分?jǐn)?shù)在的人數(shù)的,求從不及格的人中任意選取3人,其中分?jǐn)?shù)在50分以下的人數(shù)為,求的數(shù)學(xué)期.

查看答案和解析>>

同步練習(xí)冊(cè)答案