6.已知實(shí)數(shù)x,y滿(mǎn)足$\left\{\begin{array}{l}x-y≥3\\ x+2y≥6\\ x≤8\end{array}\right.$則z=x-2y的最小值為-2.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,求最小值.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=x-2y得y=$\frac{1}{2}$x-$\frac{1}{2}$z,
平移直線(xiàn)y=$\frac{1}{2}$x-$\frac{1}{2}$z,
由圖象可知當(dāng)直線(xiàn)y=$\frac{1}{2}$x-$\frac{1}{2}$z,當(dāng)過(guò)點(diǎn)B時(shí),直線(xiàn)y=$\frac{1}{2}$x-$\frac{1}{2}$z的截距最大,此時(shí)z最。
由$\left\{\begin{array}{l}{x-y=3}\\{x=8}\end{array}\right.$,解得,即B(8,5),
代入目標(biāo)函數(shù)得z=8-2×5=-2
即z=x-2y的最小值為-2,
故答案為:-2.

點(diǎn)評(píng) 本題主要考查線(xiàn)性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類(lèi)問(wèn)題的基本方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.對(duì)于函數(shù)f(x),若在定義域內(nèi)存在實(shí)數(shù)x,滿(mǎn)足f(-x)=-f(x),則稱(chēng)f(x)為“局部奇函數(shù)”.p:f(x)=m+2x為定義在[-1,2]上的“局部奇函數(shù)”;q:曲線(xiàn)g(x)=x2+(5m+1)x+1與x軸交于不同的兩點(diǎn);若“p∧q”為假命題,“p∨q”為真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知復(fù)數(shù)z1=-1+i,z2=1+i,z3=1+4i,它們所對(duì)應(yīng)的點(diǎn)分別是A,B,C,若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x,y∈R),則x+y的值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.一臺(tái)機(jī)器使用的時(shí)間較長(zhǎng),但還可以使用,它按不同的轉(zhuǎn)速生產(chǎn)出來(lái)的某機(jī)械零件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)的零件中有缺點(diǎn)的零件數(shù)隨機(jī)器運(yùn)轉(zhuǎn)的速度而變化,如表為抽樣數(shù)據(jù):
轉(zhuǎn)速x(轉(zhuǎn)/秒)1614128
每小時(shí)生產(chǎn)有缺點(diǎn)的零件數(shù)y(件)11985
(Ⅰ)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)根據(jù)散點(diǎn)圖判斷,y=ax+b與$y=c\sqrt{x}+d$哪一個(gè)適宜作為每小時(shí)生產(chǎn)的零件中有缺點(diǎn)的零件數(shù)y關(guān)于轉(zhuǎn)速x的回歸方程類(lèi)型 (給出判斷即可,不必說(shuō)明理由),根據(jù)判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)若實(shí)際生產(chǎn)中,允許每小時(shí)生產(chǎn)的零件中有缺點(diǎn)的零件數(shù)最多為10個(gè),那么機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?
(參考公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合A={x|(2x-5)(x+3)>0},B={1,2,3,4,5},則(∁RA)∩B=( 。
A.{1,2,3}B.{2,3}C.{1,2}D.{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知多面體ABCDEF中,四邊形ABCD為平行四邊形,AD⊥平面AEC,且$AC=\sqrt{2}$,AE=EC=1,AD=2EF,EF∥AD.
(Ⅰ)求證:平面FCE⊥平面ADE;
(Ⅱ)若AD=2,求多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知兩點(diǎn)A(-1,1),B(3,5),點(diǎn)C在曲線(xiàn)y=2x2上運(yùn)動(dòng),則$\overrightarrow{AB}•\overrightarrow{AC}$的最小值為( 。
A.2B.$\frac{1}{2}$C.-2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)變量x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}x-2y≤2\\ 3x+y≤4\\ x-y≥-4\end{array}\right.$,則目標(biāo)函數(shù)z=y-2x的最大值是14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知一只螞蟻在邊長(zhǎng)分別為5,12,13的三角形的邊上隨機(jī)爬行,則其恰在離三個(gè)頂點(diǎn)的距離都大于1的地方的概率為( 。
A.$\frac{π}{60}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案