分析 求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為a≥-4x-$\frac{1}{x}$在(1,+∞)恒成立,令g(x)=-4x-$\frac{1}{x}$,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
解答 解:f′(x)=$\frac{1}{x}$+a+4x=$\frac{{4x}^{2}+ax+1}{x}$,
若f(x)在(1,+∞)遞增,
則4x2+ax+1≥0在x∈(1,+∞)恒成立,
即a≥-4x-$\frac{1}{x}$在x∈(1,+∞)恒成立,
令g(x)=-4x-$\frac{1}{x}$,g′(x)=-4+$\frac{1}{x}$=$\frac{1-4x}{x}$<0,
g(x)在(1,+∞)遞減,
∴g(x)<g(1)=-5,
故a≥-5,
故答案為:[-5,+∞).
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{9}$ | B. | $\frac{4}{25}$ | C. | $\frac{2}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (1,-2) | C. | (2,1) | D. | (-2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com