【題目】某校早上8:00開始上課,假設(shè)該校學(xué)生小張與小王在早上7:30~7:50之間到校,且每人在該時(shí)間段的任何時(shí)刻到校是等可能的,則小張比小王至少晚5分鐘到校的概率是多少?
【答案】.
【解析】
試題分析:設(shè)小張到校的時(shí)刻為x,小王到校的時(shí)刻為y, 小張比小王至少晚5分鐘到校的基本事件為x-y≥5.,0≤x≤20,0≤y≤20對(duì)應(yīng)的可行域,由幾何概型概率公式可得所求概率
試題解析:用x軸表示小張到校時(shí)刻,用y軸表示小王到校時(shí)刻,建立如圖所示平面直角坐標(biāo)系.設(shè)小張到校的時(shí)刻為x,小王到校的時(shí)刻為y,
則x-y≥5.
由題意,知0≤x≤20,0≤y≤20,可得可行域如圖所示,其中,陰影部分表示小張比小王至少晚5分鐘到校.
由得A(20,15).
易知B(20,20),C(5,0),D(20,0).
由幾何概型概率公式,得所求概率P=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某海輪以每小時(shí)30海里的速度航行,在點(diǎn)測(cè)得海面上油井在南偏東,海輪向北航行40分鐘后到達(dá)點(diǎn),測(cè)得油井在南偏東,海輪改為北偏東的航向再行駛80分鐘到達(dá)點(diǎn),則兩點(diǎn)的距離為(單位:海里)
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位建造一間地面面積為12的背面靠墻的矩形小房,由于地理位置的限制,房子側(cè)面的長(zhǎng)度不得超過米,房屋正面的造價(jià)為400元/,房屋側(cè)面的造價(jià)為150元/,屋頂和地面的造價(jià)費(fèi)用合計(jì)為5800元,如果墻高為3,且不計(jì)房屋背面的費(fèi)用.
(1)把房屋總價(jià)表示成的函數(shù),并寫出該函數(shù)的定義域;
(2)當(dāng)側(cè)面的長(zhǎng)度為多少時(shí),總造價(jià)最低?最低總造價(jià)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于在區(qū)間上有意義的函數(shù),滿足對(duì)任意的,,有恒成立,厄稱在上是“友好”的,否則就稱在上是“不友好”的,現(xiàn)有函數(shù).
(1)若函數(shù)在區(qū)間()上是“友好”的,求實(shí)數(shù)的取值范圍;
(2)若關(guān)于的方程的解集中有且只有一個(gè)元素,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為,圓心角為的扇形金屬材料中剪出一個(gè)長(zhǎng)方形,并且與的平分線平行,設(shè).
(1)試將長(zhǎng)方形的面積表示為的函數(shù);
(2)若將長(zhǎng)方形彎曲,使和重合焊接制成圓柱的側(cè)面,當(dāng)圓柱側(cè)面積最大時(shí),求圓柱的體積(假設(shè)圓柱有上下底面);為了節(jié)省材料,想從△中直接剪出一個(gè)圓面作為圓柱的一個(gè)底面,請(qǐng)問是否可行?并說明理由.
(參考公式:圓柱體積公式.其中是圓柱底面面積,是圓柱的高;等邊三角形內(nèi)切圓半徑.其中是邊長(zhǎng))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場(chǎng)對(duì)同一種商品開展促銷活動(dòng),對(duì)購買該商品的顧客兩家商場(chǎng)的獎(jiǎng)勵(lì)方案如下:
甲商場(chǎng):顧客轉(zhuǎn)動(dòng)如圖所示圓盤,當(dāng)指針指向陰影部分(圖中四個(gè)陰影部分均為扇形,且每個(gè)扇形圓心角均為15°,邊界忽略不計(jì)) 即為中獎(jiǎng).
乙商場(chǎng):從裝有3個(gè)白球3個(gè)紅球的盒子中一次性摸出2個(gè)球(球除顏色外不加區(qū)分),如果摸到的是2個(gè)紅球,即為中獎(jiǎng).
問:購買該商品的顧客在哪家商場(chǎng)中獎(jiǎng)的可能性大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在每年的春節(jié)后,某市政府都會(huì)發(fā)動(dòng)公務(wù)員參與到植樹綠化活動(dòng)中去.林業(yè)管理部門在植樹前,為了保證樹苗的質(zhì)量,都會(huì)在植樹前對(duì)樹苗進(jìn)行檢測(cè).現(xiàn)從甲、乙兩種樹苗中各抽測(cè)了10株樹苗,量出它們的高度如下(單位:厘米):
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)畫出兩組數(shù)據(jù)的莖葉圖,并根據(jù)莖葉圖對(duì)甲、乙兩種樹苗的高度作比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論;
(2)設(shè)抽測(cè)的10株甲種樹苗高度平均值為,將這10株樹苗的高度依次輸入,按程序框(如圖)進(jìn)行運(yùn)算,問輸出的S大小為多少?并說明S的統(tǒng)計(jì)學(xué)意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓 (m>1)與雙曲線 (n>0)有公共焦點(diǎn)F1 , F2 . P是兩曲線的交點(diǎn),則 =( )
A.4
B.2
C.1
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(1,3cosα), =(1,4tanα), ,且 =5.
(1)求| + |;
(2)設(shè)向量 與 的夾角為β,求tan(α+β)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com