已知命題p:存在實(shí)數(shù)x,使sinx=
π
2
成立;命題q:x2-3x+2<0的解集為(1,2).給出下列四個(gè)結(jié)論:
①命題“p∧q”是真命題;
②命題“p∧¬q”是假命題;
③命題“¬p∧q”是真命題;
④命題“¬p∨¬q”是假命題.
其中正確的結(jié)論是( 。
A、②③B、②④
C、①②④D、①②③④
考點(diǎn):復(fù)合命題的真假
專題:常規(guī)題型,簡(jiǎn)易邏輯
分析:由命題p:存在實(shí)數(shù)x,使sinx=
π
2
成立可知p假;命題q:x2-3x+2<0的解集為(1,2)可知q真;對(duì)四個(gè)結(jié)論一一判斷.
解答: 解:命題p:存在實(shí)數(shù)x,使sinx=
π
2
成立,是假命題;命題q:x2-3x+2<0的解集為(1,2)是真命題;
則①錯(cuò)誤,命題“p∧q”是假命題;
②正確,命題p與命題¬q都是假命題,則命題“p∧¬q”是假命題;
③正確,命題¬p與命題q都是真命題,則命題“¬p∧q”是真命題;
④錯(cuò)誤,¬p真,¬q假,則命題“¬p∨¬q”是真命題.
故選:A.
點(diǎn)評(píng):本題考查了復(fù)合命題真假性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)圖象與函數(shù)y=logax圖象關(guān)于直線y=x對(duì)稱,則函數(shù)y=f(x-1)圖象過定點(diǎn)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在區(qū)間(-∞,0]上是增函數(shù)的是( 。
A、y=x2-4x+8
B、y=log
 
 
1
2
(-x)
C、y=-
2
x+1
D、y=
1-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
alnx+ex(x>0)
3x+1(x≤0)
的零點(diǎn)個(gè)數(shù)為(其中a>0)(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題不正確的是( 。
A、零向量沒有方向
B、零向量只與零向量相等
C、零向量的模為0
D、零向量與任何向量共線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=2x+2-x與g(x)=2x-2-x的定義域均為R,則( 。
A、f(x)與g(x)均為偶函數(shù)
B、f(x)為奇函數(shù),g(x)為偶函數(shù)
C、f(x)為偶函數(shù),g(x)為奇函數(shù)
D、f(x)與g(x)均為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x>0},集合B={x|1≤x<2},則∁AB=( 。
A、(-1,1)∪[2,+∞)
B、(0,1)∪[2,+∞)
C、(-1,1)∪(2,+∞)
D、(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在y=2x,y=log2x,y=x2,這三個(gè)函數(shù)中,當(dāng)0<x1<x2<1時(shí),使f(
x1+x2
2
)>
f(x1)+f(x2)
2
恒成立的函數(shù)的個(gè)數(shù)是( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:x≤1,條件q:
1
x
<1,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案