8.等差數(shù)列{an}中,a3+a4+a8=12,則前9項和S9=( 。
A.18B.24C.36D.48

分析 根據(jù)等差數(shù)列通項公式求出a5的值,再根據(jù)前n項和求出S9即可.

解答 解:等差數(shù)列{an}中,∵a3+a4+a8=12,
∴a5=$\frac{1}{3}$(a3+a4+a8)=4,
∴前9項和為:
${S_9}=\frac{{({a_1}+{a_9})×9}}{2}=9×{a_5}=36$.
故選:C.

點評 本題考查了等差數(shù)列的通項公式與前n項和公式的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.(1)定理:平面內(nèi)的一條直線與平面的一條斜線在平面內(nèi)的射影垂直,則這條直線垂直于斜線.
試證明此定理:如圖1所示:若PA⊥α,A是垂足,斜線PO∩α=O,a?α,a⊥AO,試證明a⊥PO

(2)如圖2,正方體ABCD-A1B1C1D1中,點P在側(cè)面BCC1B1及其邊界上運動,并且總是保持AP⊥BD1,試證明動點P在線段B1C上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在三角形ABC中,已知AB=5,AC=7,AD是BC邊上的中線,點E是AD的一個三等分點(靠近點A),則$\overrightarrow{AE}•\overrightarrow{BC}$=( 。
A.12B.6C.24D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在如圖所示的幾何體中,四邊形BB1C1C是矩形,BB1⊥平面ABC,A1B1∥AB,AB=2A1B1,E是AC的中點.
(1)求證:A1E∥平面BB1C1C;
(2)若AC=BC,AB=2BB1,求證:平面BEA1⊥平面AA1C1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知等比數(shù)列{an}和等差數(shù)列{bn}均是首項為1的遞增數(shù)列,且a2=b2,a3=b4
(I)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)若數(shù)列{cn}滿足cn=an+(-1)nbn,求數(shù)列{cn)前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如果復數(shù)(1+bi)(2+i)是純虛數(shù),則$|{\frac{2b+3i}{1+bi}}|$的值為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學的對稱美,如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對稱統(tǒng)一的形式美、和諧美.給出定義:能夠?qū)AO的周長和面積同時平分的函數(shù)稱為這個圓的“優(yōu)美函數(shù)”.給出下列命題:
①對于任意一個圓O,其“優(yōu)美函數(shù)”有無數(shù)個;
②正弦函數(shù)y=sinx可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”;
③函數(shù)f(x)=ln(x2+$\sqrt{{x^2}+1$)可以是某個圓的“優(yōu)美函數(shù)”;
④函數(shù)y=f(x)是“優(yōu)美函數(shù)”的充要條件為函數(shù)y=f(x)的圖象是中心對稱圖形.
其中正確的命題是①②(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知數(shù)列{an}滿足,a1=1,an+1=$\frac{1}{2}$an+1(n∈N*).
(I)求證:數(shù)列{an-2}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)設bn=(2n-1)•(2-an)(n∈N*),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若兩條異面直線所成的角為90°,則稱這對異面直線為“理想異面直線對”,在正方體所有棱所在的直線中,“理想異面直線對”的對數(shù)為(  )
A.12B.24C.48D.96

查看答案和解析>>

同步練習冊答案