19.在三角形ABC中,已知AB=5,AC=7,AD是BC邊上的中線,點(diǎn)E是AD的一個(gè)三等分點(diǎn)(靠近點(diǎn)A),則$\overrightarrow{AE}•\overrightarrow{BC}$=( 。
A.12B.6C.24D.4

分析 用$\overrightarrow{AB},\overrightarrow{AC}$表示出$\overrightarrow{AE},\overrightarrow{BC}$,再利用數(shù)量積的運(yùn)算性質(zhì)計(jì)算.

解答 解:∵AD是BC邊上的中線,點(diǎn)E是AD的一個(gè)三等分點(diǎn)(靠近點(diǎn)A),
∴$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$,$\overrightarrow{AE}=\frac{1}{3}\overrightarrow{AD}$=$\frac{1}{6}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}$,
$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$,
∴$\overrightarrow{AE}•\overrightarrow{BC}$=$\frac{1}{6}(\overrightarrow{AC}+\overrightarrow{AB})•(\overrightarrow{AC}-\overrightarrow{AB})$=$\frac{1}{6}$(${\overrightarrow{AC}}^{2}-{\overrightarrow{AB}}^{2}$)=$\frac{1}{6}×(49-25)$=4.
故選:D.

點(diǎn)評(píng) 本題考查了向量線性運(yùn)算的幾何意義,向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知正數(shù)x,y,z滿足5x+4y+3z=10,則${9^{x^2}}+{9^{{y^2}+{z^2}}}$的最小值為( 。
A.27B.18C.36D.54

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,△ABC是邊長(zhǎng)為2的等邊三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,且EC⊥平面ABC,EC=1.
(Ⅰ)證明:DE∥平面ABC;
(Ⅱ)證明:平面ABD⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)是定義在R上的奇函數(shù),且在區(qū)間(-∞,+∞)上單調(diào)遞減,若f(3x+1)+f(1)≥0,則x的取值范圍是(-∞,-$\frac{2}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知點(diǎn)M(m,n)在直線x+2$\sqrt{2}$y-3=0上,則$\sqrt{{m}^{2}+{n}^{2}}$的最小值為( 。
A.1B.2C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)a=${∫}_{0}^{\frac{π}{2}}$sinxdx,則(2x+$\frac{a}{x}$)6展開式的常數(shù)項(xiàng)為160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)向量$\overrightarrow a$=(1,x),$\overrightarrow b$=(x,4),則“x=$\int_{1}^{e}{\frac{2}{t}}$dt”(e=2.718…是自然對(duì)數(shù)的底數(shù))是“$\overrightarrow a$∥$\overrightarrow b$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.等差數(shù)列{an}中,a3+a4+a8=12,則前9項(xiàng)和S9=(  )
A.18B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+2y≤10}\\{2x+y≥3}\\{0≤x≤4}\\{y≥1}\end{array}\right.$,則z=|x+y-10|的最大值是8.

查看答案和解析>>

同步練習(xí)冊(cè)答案