【題目】正方體中,中點,中點,則異面直線所成角的余弦值為____

【答案】

【解析】

解法一:連結,可證得為異面直線所成角或其補角,然后在中利用余弦定理可求得結果;

解法二:如圖,以為原點,分別以的方向為軸的正方向,建立空間直角坐標系,利用向量法求解;

解法三:由于,所以以為基底,將,用基底表示出來,再向量夾角公式求解.

解法一:連結,因為四邊形為正方形,中點,所以.因為,所以四邊形為平行四邊形,所以,又中點,所以,所以四邊形為平行四邊形,所以,

所以為異面直線所成角或其補角.設正方體的棱長為2,在中,;

同理可求.在中,

故異面直線所成角的余弦值為

解法二:如圖,以為原點,分別以的方向為軸的正方向,建立空間直角坐標系.設正方體的棱長為2,則各點的坐標為,所以,

所以

所以異面直線所成角的余弦值為

解法三:設正方體的棱長為2

,,

三條直線兩兩垂直得,

所以,

所以

所以異面直線所成角的余弦值為

故答案為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有一副斜邊長為10的直角三角板,將它們斜邊重合,若將其中一個三角板沿斜邊折起形成三棱錐,如圖所示,已知,,則三棱錐的外接球的表面積為______;該三棱錐體積的最大值為_______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象如圖所示,給出四個函數(shù):①,②,③,④,又給出四個函數(shù)的圖象,則正確的匹配方案是( ).

A.①-甲,②-乙,③-丙,④-丁B.②-甲,①-乙,③-丙,④-丙

C.①-甲,③-乙,④-丙,②-丁D.①-甲,④-乙,③-丙,②-丁

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】采購經理指數(shù)(PMⅠ)是衡量一個國家制造業(yè)的“體檢表”,是衡量制造業(yè)在生產、新訂單、商品價格、存貨、雇員、訂單交貨新出口訂單和進口等八個方面狀況的指數(shù),圖為20189月—20199月我國制造業(yè)的采購經理指數(shù)(單位:%).

1)求2019年前9個月我國制造業(yè)的采購經理指數(shù)的平均數(shù)(精確到0.1);

2)從201810月—20199月這12個月任意選取4個月,記采購經理指數(shù)與上個月相比有所回升的月份個數(shù)為X,求X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學對這四件參賽作品預測如下:

甲說:作品獲得一等獎”; 乙說:作品獲得一等獎”;

丙說:兩件作品未獲得一等獎”; 丁說:作品獲得一等獎”.

評獎揭曉后,發(fā)現(xiàn)這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是_________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).設的交點為,當變化時,的軌跡為曲線

1)求的普通方程;

2)設為圓上任意一點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為,將曲線繞極點逆時針旋轉后得到曲線.

(Ⅰ)求曲線的極坐標方程;

(Ⅱ)若直線,分別相交于異于極點的,兩點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】謝賓斯基三角形是一種分形,由波蘭數(shù)學家謝賓斯基在1915年提出,先作一個正三角形挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形),然后在剩下的小三角形中又挖去一個“中心三角形”,我們用白色代表挖去的面積,那么黑三角形為剩下的面積(我們稱黑三角形為謝賓斯基三角形).向圖中第4個大正三角形中隨機撒512粒大小均勻的細小顆粒物,則落在白色區(qū)域的細小顆粒物的數(shù)量約是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P為直線上任意一點,,M為平面內一點,且.

(Ⅰ)求點M的軌跡E的方程;

(Ⅱ)過點P作曲線E的切線,切點分別是.,求點P的坐標.

查看答案和解析>>

同步練習冊答案