7.已知函數(shù)y=x2-2x+3在[0,a](a>0)上最大值是3,最小值是2,則實數(shù)a的取值范圍是( 。
A.0<a<1B.0<a≤2C.1≤a≤2D.0≤a≤2

分析 先求出函數(shù)f(x)的最小,正好為了說明[0,a]包含對稱軸,當(dāng)x=0時 y=3,根據(jù)對稱性可知當(dāng)x=2時 y=3,結(jié)合二次函數(shù)的圖象可求出a的范圍.

解答 解:∵函數(shù)f(x)=x2-2x+3是開口向上的拋物線,對稱軸 x=1,
當(dāng) x=1時函數(shù)取得最小值 f(1)=1-2+3=2,
∵y=x2-2x+3在[0,a]上最小值為2,∴a≥1;
當(dāng)x=0時 y=3 函數(shù)y=x2-2x+3在(1,+∞)上是增函數(shù),
當(dāng)x=2時 y=4-4+3=3,當(dāng)x>2時 y>3,
∵函數(shù)y=x2-2x+3在[0,a]上最大值為3,
∴a≤2 綜上所述 1≤a≤2.
故選:C.

點評 二次函數(shù)是最常見的函數(shù)模型之一,也是最熟悉的函數(shù)模型,解決此類問題要充分利用二次函數(shù)的性質(zhì)和圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=sinx+$\sqrt{3}$cosx在x=θ時取得最大值,則cos(2θ+$\frac{π}{4}$)=( 。
A.-$\frac{\sqrt{2}+\sqrt{6}}{4}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}-\sqrt{6}}{4}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)復(fù)數(shù)z=2m+(4-m2)i,當(dāng)實數(shù)m取何值時,復(fù)數(shù)z對應(yīng)的點:
(1)位于虛軸上?
(2)位于一、三象限?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,AB是圓O的直徑,矩形DCBE垂直于圓O所在的平面,AB=4,BE=2.
(Ⅰ)證明:平面ADE⊥平面ACD;
(Ⅱ)當(dāng)三棱錐C-ADE體積最大時,求三棱錐C-ADE的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.直線2x-y+9=0和直線4x-2y+1=0的位置關(guān)系是( 。
A.平行B.不平行
C.平行或重合D.既不平行也不重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.4B.2C.6D.$\frac{7}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=2sin(2x+$\frac{π}{6}$)+a+1(a為常數(shù)).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若當(dāng)x∈[0,$\frac{π}{2}$]時,f(x)的最大值為4,求a的值;
(3)求出f(x)的對稱軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)一個軸截面是邊長為4的正方形的圓柱體積為V1,底面邊長為$2\sqrt{3}$,側(cè)棱長為$\sqrt{10}$的正四棱錐的體積為V2,則$\frac{V_1}{V_2}$的值是2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線$\frac{x^2}{4}-\frac{y^2}{12}=1$的離心率為e,拋物線x=my2的焦點為(e,0),則實數(shù)m的值為( 。
A.4B.$\frac{1}{4}$C.8D.$\frac{1}{8}$

查看答案和解析>>

同步練習(xí)冊答案