分析 利用偶函數(shù)的定義建立方程f(-x)=f(x),然后求解a.函數(shù)f(x)=$\frac{ax+1}{{x}^{2}+b}$是偶函數(shù),所以b≤0.
解答 解:因?yàn)楹瘮?shù)f(x)=$\frac{ax+1}{{x}^{2}+b}$是偶函數(shù),所以f(-x)=f(x),
即$\frac{-ax+1}{{x}^{2}+b}$=$\frac{ax+1}{{x}^{2}+b}$,即-ax+1=ax+1,所以a=0.
函數(shù)f(x)=$\frac{ax+1}{{x}^{2}+b}$是偶函數(shù),所以b∈R.
故答案為0,b∈R.
點(diǎn)評(píng) 本題考查了函數(shù)奇偶性的應(yīng)用,函數(shù)奇偶性的應(yīng)用主要是通過(guò)定義,構(gòu)建一個(gè)條件方程f(-x)=f(x)或f(-x)=-f(x),或者是利用函數(shù)奇偶性的運(yùn)算性質(zhì)來(lái)判斷的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
x | 3 | -2 | 4 | $\sqrt{2}$ |
y | -2$\sqrt{3}$ | 0 | -4 | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com