分析 (Ⅰ)證明△ENM∽△EDC,利用EN:ED=1:4,求可MN:CD的值;
(Ⅱ)若MN∥AE,證明△AEC∽△ADE,可得AE2=AC•AD,利用切割線定理可得AB2=AC•AD,即可證明AE=AB.
解答 解:(Ⅰ)由已知C,M,N,D四點共圓,可得∠ENM=∠EDC,
所以△ENM∽△EDC,
所以MN:CD=EN:ED=1:4.…(5分)
(Ⅱ)已知∠ENM=∠EDC,而MN∥AE,故∠ENM=∠AEC,
所以∠EDC=∠AEC,
所以△AEC∽△ADE,所以$\frac{AE}{AD}=\frac{AC}{AE}$,即AE2=AC•AD,
而AB,ACD分別為圓的一條切線和一條割線,
所以AB2=AC•AD,因此AE=AB.…(10分)
點評 本題考查三角形相似的判定與性質,考查切割線定理的運用,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
男性公務員 | 女性公務員 | 總計 | |
有意愿生二胎 | 30 | 15 | |
無意愿生二胎 | 20 | 25 | |
總計 |
P(k2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{5}{4}$ | C. | $\frac{7}{5}$ | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com