8.化簡:$\frac{1-cosα}{1+cosα}$=(  )
A.sin2αB.tan2αC.sin2$\frac{α}{2}$D.tan2$\frac{α}{2}$

分析 利用二倍角的正弦函數(shù),余弦函數(shù)公式,同角三角函數(shù)基本關系式即可化簡得解.

解答 解:$\frac{1-cosα}{1+cosα}$=$\frac{2si{n}^{2}\frac{α}{2}}{2co{s}^{2}\frac{α}{2}}$=tan2$\frac{α}{2}$.
故選:D.

點評 本題主要考查了二倍角的正弦函數(shù),余弦函數(shù)公式,同角三角函數(shù)基本關系式在三角函數(shù)化簡求值中的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.求使-2a=sinx成立的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.某種商品第一天上市售價42元,以后每天提價2元,并且在開始銷售的前10天內(nèi)每天的銷售量與上市天數(shù)的關系是g(x)=150-5x(其中x表示天數(shù))
(1)寫出上市10天內(nèi)商品銷售價y與天數(shù)x的關系式;
(2)求該商品在上市10天內(nèi),哪一天的銷售金額最大?并求出最大金額.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.代數(shù)式(3x2+5xy-7y23展開后,各項數(shù)字系數(shù)的和是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在△ABC中,內(nèi)角A、B、C對應的邊長分別為a、b、c.已知acosB-$\frac{1}{2}$b=$\frac{{a}^{2}}{c}$-$\frac{bsinB}{sinC}$.
(1)求角A;
(2)若a=$\sqrt{3}$,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.函數(shù)y=(m2-m-1)x-5m-3為冪函數(shù),則實數(shù)m的值為-1或2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.寫出下列直線的斜截式方程:
(1)直線的傾斜角為45°且在y軸上的截距是2;
(2)直線過點A(3,1)且在y軸上的截距是-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知數(shù)列{an}的前n項和為Sn,且滿足Sn=2an+n(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若bn=nan,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.定義域為R的函數(shù)f(x)滿足:①f(x)+f(-x)=0(x∈R);②f(-3)=0;③[f(x1)-f(x2)](x1-x2)>0,(x1,x2∈R+,x1≠x2).則不等式x•f(x)<0的解集是(  )
A.{x|-3<x<0或x>3}B.{x|x<-3或0≤x<3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}

查看答案和解析>>

同步練習冊答案