8.設(shè)集合P={x|0≤x≤$\sqrt{2}$},m=$\sqrt{3}$,則下列關(guān)系中正確的是( 。
A.m⊆PB.m?PC.m∈PD.m∉P

分析 判斷$\sqrt{3}$與$\sqrt{2}$的關(guān)系即可.

解答 解:∵集合P={x|0≤x≤$\sqrt{2}$},
∴$m=\sqrt{3}>\sqrt{2}$,
故選D.

點(diǎn)評 本題主要考查集合的子交并補(bǔ)集運(yùn)算和元素與集合的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系xOy中,動點(diǎn)M到F1(-$\sqrt{3}$,0)、F2($\sqrt{3}$,0)的距離之和是4.
(1)求動點(diǎn)M的軌跡C的方程;
(2)設(shè)過點(diǎn)P(3,0)的直線l與軌跡C交于點(diǎn)A、B,問是否存在定點(diǎn)Q,使得$\overrightarrow{QA}•\overrightarrow{QB}$為定值?若存在,求出點(diǎn)Q的坐標(biāo)及這個(gè)定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}中,a1=3,a2=6,an+2=an+1-an,則a5=(  )
A.6B.-6C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=ax+bsinx(0<x<$\frac{π}{2}$),若a≠b且a,b∈{-2,-1,0,1,2},則f(x)的圖象上任一點(diǎn)處的切線斜率都非負(fù)的概率為$\frac{9}{20}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|x2-x-2≤0},B={-1,0,1},則A∩B=( 。
A.{0,1}B.{-1,1}C.{-1,0}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x+2y-2≥0\\ x-y+1≥0\\ 2x-y-2≥0\end{array}\right.$,則z=x+y的最小值是( 。
A.$\frac{8}{5}$B.1C.2D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=cosx(cosx+$\sqrt{3}$sinx).
(Ⅰ)求f(x)的最小值;
(Ⅱ)在△ABC中,角A、B、C的對邊分別是a、b、c,若f(C)=1且c=$\sqrt{7}$,a+b=4,求S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)是定義在[-1,1]上的奇函數(shù),若a,b∈[-1,1],a+b≠0時(shí),都有(f(a)+f(b))(a+b)>0成立,且f(1)=3.
(1)判斷f(x)在區(qū)間[-1,1]上的單調(diào)性,并給出證明;
(2)解不等式:f(x+$\frac{1}{2}$)<f($\frac{1}{x-1}$);
(3)若f(x)+3≥-m2-2tm對所有的x∈[-1,1],t∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)數(shù)列{an}各項(xiàng)均為正值,且前n項(xiàng)和Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),則此數(shù)列的通項(xiàng)an應(yīng)為( 。
A.an=$\sqrt{n+1}$-$\sqrt{n}$B.an=$\sqrt{n}$-$\sqrt{n-1}$C.an=$\sqrt{n+2}$-$\sqrt{n+1}$D.an=2$\sqrt{n}$-1

查看答案和解析>>

同步練習(xí)冊答案